
Date of submission: 02.02.2024

Date of defense: 16.05.2024

Benguerir 2024

Mohammed VI Polytechnic University | College of Computing

Securing Networks:

Anomaly-Based Network Intrusion Detection

with Federated Learning

Doctoral Thesis

submitted in fulfillment of the requirements for the
degree of Doctor of Engineering (Dr.-Ing.)

by

Meryem Janati Idrissi, M.Sc.
Thesis Director : Dr. Ismail Berrada

Affidavit

I, the undersigned, hereby declare that the submitted Doctoral Thesis is my own

work. I have only used the sources indicated and have not made unauthorized use

of the services of a third party. Where the work of others has been quoted or repro-

duced, the source is always given. I further declare that the dissertation presented

here has not been submitted in the same or similar form to any other institution for

the purpose of obtaining an academic degree.

Ben-Guerir, –.12.2023

© Meryem Janati Idrissi, M.Sc.

Abstract

Over the last decades, the Internet has evolved into a complex infrastructure that

connects billions of devices worldwide. This evolution has not only facilitated

widespread connectivity but has also resulted in the broadening of the threat land-

scape. The increased interconnectivity of devices and systems has created new sys-

tem vulnerabilities, placing cybersecurity at the forefront of concerns for organiza-

tions regardless of their scale or size. A robust cybersecurity strategy can no longer

solely depend on static defenses of antiviruses and firewalls but demands layered

protections. Intrusion Detection Systems (IDS) have emerged as a complementary

security measure, demonstrating effectiveness in detecting various cyber threats.

Centralized Machine Learning (ML)-based anomaly detection methods have shown

promising results in improving the accuracy and efficiency of IDS. However, new

challenges arise such as privacy concerns and regulatory restrictions that must be

tackled. Federated Learning (FL) has emerged as a solution that allows distributed

clients to collaboratively train a shared model while preserving the privacy of their

local data. In this dissertation, we propose the use of ML/Deep Learning (DL) and

FL to build efficient and privacy-preserving IDS.

Our first contribution proposes a distributed network intrusion detection method

based on Autoencoders (AEs) and FL. Our approach, Fed-ANIDS, utilizes AEs to

build an anomaly-based Network Intrusion Detection System (NIDS) to detect in-

trusions effectively while incurring low false positive rates. On the other hand, it

provides privacy guarantees to protect sensitive client data by allowing each entity

in the system to learn locally with its data. Evaluations of different datasets demon-

strate the effectiveness of the proposed approach by achieving high performance in

terms of different metrics while preserving the data privacy of distributed clients.

The second contribution of this thesis investigates the relationship between the

quality of flow features and the performance of ML models. Specifically, by design-

ing a series of experiments, we inspect the impact of the flow metering hyperpa-

iii

rameters, specifically idle and active timeouts, on the overall performance of NIDS.

Furthermore, we model a realistic scenario involving distributed and heterogeneous

NIDS instances. For this purpose, we explore FL to extend our understanding of its

potential in the field of heterogeneous NIDS. In light of our findings, fine-tuning idle

and active timeouts is imperative.

The final contribution of this thesis proposes a novel solution, called FedBS for the

data heterogeneity challenge in FL for particular ML models with batch normaliza-

tion layers. FedBS consists of a new generic aggregation strategy that handles batch

statistics in FL with non-Independent and Identically Distributed (IID) settings. Em-

pirical results show that our proposed approach outperforms state-of-the-art meth-

ods on both various real-world datasets and under various non-IID settings. More-

over, in some cases, FedBS can be 2ˆ faster than other FL approaches, coupled with

higher testing accuracy.

iv

Résumé

Au cours des dernières décennies, Internet a évolué en une infrastructure complexe

qui relie des milliards d’appareils à travers le monde. Cette évolution a non seule-

ment facilité la connectivité généralisée, mais a également élargi le paysage des men-

aces. L’interconnectivité croissante des appareils et des systèmes a créé de nouvelles

vulnérabilités système, plaçant la cybersécurité au premier plan des préoccupations

pour les organisations, quelle que soit leur taille ou leur envergure. Une stratégie

de cybersécurité robuste ne peut plus dépendre uniquement des défenses statiques

telles que les antivirus et les pare-feu, mais exige des protections en couches. Les

systèmes de détection d’intrusion (IDS) ont émergé comme une mesure de sécurité

complémentaire, démontrant leur efficacité dans la détection de diverses menaces

cybernétiques. Les méthodes de détection d’anomalies basées sur l’apprentissage

machine centralisé ont montré des résultats prometteurs pour améliorer la précision

et l’efficacité des IDS. Cependant, de nouveaux défis surgissent, tels que les préoc-

cupations en matière de confidentialité et les restrictions réglementaires, qui doivent

être abordés. L’apprentissage fédéré (FL) est apparu comme une solution qui permet

aux clients répartis de former collaborativement un modèle partagé tout en préser-

vant la confidentialité de leurs données locales. Dans cette thèse, nous proposons

l’utilisation de l’apprentissage machine (ML), l’apprentissage profond (DL) et du FL

pour construire des IDS efficaces et respectueux de la vie privée.

Notre première contribution propose une méthode de détection d’intrusion dans

les réseaux distribués basée sur les autoencodeurs (AEs) et le FL. Notre approche,

Fed-ANIDS , utilise des AEs pour construire un système de détection d’intrusions

réseau (NIDS) basé sur les anomalies afin de détecter efficacement les intrusions tout

en générant des taux de faux positifs faibles. D’autre part, il fournit des garanties

de confidentialité pour protéger les données sensibles des clients en permettant à

chaque entité du système d’apprendre localement avec ses données. Les évaluations

de différents ensembles de données démontrent l’efficacité de l’approche proposée en

v

atteignant de hautes performances en termes de différents indicateurs tout en préser-

vant la confidentialité des données des clients répartis.

La deuxième contribution de cette thèse examine la relation entre la qualité des

caractéristiques de flux et la performance des modèles ML. Plus précisément, en con-

cevant une série d’expériences, nous examinons l’impact des hyperparamètres de

mesure de flux, notamment les temps d’attente inactifs et actifs, sur la performance

globale des NIDS. De plus, nous modélisons un scénario réaliste impliquant des in-

stances NIDS distribuées et hétérogènes. À cette fin, nous explorons le FL pour éten-

dre notre compréhension de son potentiel dans le domaine des NIDS hétérogènes. À

la lumière de nos résultats, l’ajustement fin des temps d’attente inactifs et actifs est

impératif.

La dernière contribution de cette thèse propose une nouvelle solution, appelée

FedBS, pour le défi de l’hétérogénéité des données dans le FL pour certains modèles

ML avec des couches de normalisation par lots. FedBS se compose d’une nouvelle

stratégie d’agrégation générique qui gère les statistiques de lots dans le FL avec des

paramètres non indépendants et identiquement distribués (IID). Les résultats em-

piriques montrent que notre approche proposée surpasse les méthodes de pointe sur

divers ensembles de données du monde réel et dans divers paramètres non IID. De

plus, dans certains cas, FedBS peut être 2× plus rapide que d’autres approches FL,

associé à une précision de test plus élevée.

vi

Acknowledgments

This journey has been a rollercoaster, full of ups and downs, full of joy, stress, and

excitement. First and foremost, all praise to Allah the Almighty and the Merciful for

giving me the chance and strength to keep pushing forward, and to complete this

thesis.

I would like to express my gratitude to my thesis supervisor Professor Ismail

Berrada for his invaluable guidance, support, and mentorship throughout this re-

search. His expertise, encouragement, and insightful feedback have been invaluable

in shaping the direction and content of this thesis. Additionally, I extend my grat-

itude to all the professors and academic staff in the College of Computing for their

encouragement and assistance throughout this academic journey.

Last but not least, I would like to express my sincere appreciation to my parents,

my sister, and my brother for their support. They have always believed in me and

have always been there for me, even during the most challenging times. I am grate-

ful for their sacrifices and for everything they have done for me. And to my dear

husband, I am forever indebted to you for being kind and supportive. Your assis-

tance and encouragement were a constant source of strength, reminding me why I

was striving for this goal. Finally, I extend my acknowledgment to my friends and

colleagues for all the fun and happy moments we shared and for offering a sense of

balance during this demanding journey.

vii

Contents

Abstract iii

Résumé v

Acknowledgments vii

Contents viii

List of Abbreviations xi

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . 4

1.2 Research questions and contributions 6

1.3 Thesis outline . 9

1.4 Publications . 10

I Concepts & Related Work 11

2 Intrusion Detection Systems 12

2.1 Introduction . 12

2.2 Definition . 13

2.3 Types of intrusion detection systems . 14

2.4 Flow-based network anomaly detection 16

2.5 Network-based intrusion detection datasets 21

2.6 Summary . 23

viii

3 Machine Learning Introduction 25

3.1 Introduction . 25

3.2 What is machine learning? . 26

3.3 Deep learning . 36

3.4 Federated learning . 41

3.5 Learning on non-IID data . 49

3.6 Summary . 52

4 ML-enabled Intrusion Detection 53

4.1 Introduction . 53

4.2 ML-based anomaly detection . 54

4.3 DL-based anomaly detection . 55

4.4 Federated learning for intrusion detection 57

4.5 Limitations and research gaps . 60

4.6 Summary . 61

II Contributions 63

5 Federated Learning for Anomaly-based NIDS 64

5.1 Introduction . 64

5.2 Problem statement . 65

5.3 Methodology . 66

5.4 Experiments and results . 72

5.5 Summary . 78

6 Flow Timeout and the Performance of ML Models for NIDS 81

6.1 Introduction . 81

6.2 Problem statement . 82

6.3 Design of experiments . 83

6.4 Experiments and results . 86

6.5 Summary . 95

7 Federated Learning for Heterogeneous Systems 97

7.1 Introduction . 97

7.2 Problem statement . 99

7.3 Preliminaries . 101

7.4 Methodology . 101

ix

7.5 Experiments and results . 103

7.6 Summary . 106

8 Conclusion and Future Work 108

8.1 Summary . 108

8.2 Research gaps and future work . 110

Bibliography 113

Appendix 133

8.3 Features . 133

x

List of Abbreviations

ML Machine Learning

AI Artificial Intelligence

FL Federated Learning

DL Deep Learning

NSS Network Security Systems

IDS Intrusion Detection System

IPS Intrusion Prevention System

NIDS Network-based Intrusion Detection System

HIDS Host-based Intrusion Detection System

AIDS Anomaly-based Intrusion Detection System

SIDS Signature-based Intrusion Detection System

DP Differential Privacy

SMC Secure-Multiparty Computation

HE Homomorphic Encryption

NSM Network Security Monitoring

ICS Industrial Control Systems

SIEM Security information and event management

SGD Stochastic Gradient Descent

NN Neural Network

xi

ANN Artificial Neural Network

CNN Convolutional Neural Network

DNN Deep Neural Network

RNN Recurrent Neural Network

KNN K-Nearest Neighbor

DT Decision Tree

RF Random Forest

LSTM Long Short-Term Memory

ET Extra Tree

MLP Multi-Layer Perceptron

AE Autoencoder

VAE Variational Autoencoder

AAE Adversarial Autoencoder

GAN Genetative Adversarial Network

BiGAN Bidirectional GAN

NF Normalizing Flow

BN Batch Normalization

IID Independent and Identically Distributed

HFL Horizontal Federated Learning

VFL Vertical Federated Learning

FTL Federated Transfer Learning

xii

List of Figures

1.1 Growth of Internet use between 1994 and 2021 (source: ITU). 2

1.2 Tools in use by organizations for network visibility according to SANS

2020 Threat Detection Survey. 3

1.3 Thesis outline. 9

2.1 The C.I.A triad. 13

2.2 Taxonomy of intrusion detection systems. 14

2.3 Taxonomy of anomaly-based intrusion detection system. 17

2.4 The evolution of intrusion detection and flow-based technologies (source:

(Sperotto et al., 2010)). 19

2.5 Active timeout. 20

2.6 Idle timeout. 20

3.1 Classical programming vs machine learning. 26

3.2 Training process of supervised learning algorithms. 27

3.3 Training process of unsupervised learning algorithms. 28

3.4 Training process of semi-supervised learning algorithms. 29

3.5 Training process of reinforcement learning algorithm. 30

3.6 ROC curves and area under the curve (retrieved from Rodríguez-

Hernández et al. 2021). 32

3.7 Structure of a shallow ANN. 34

3.8 Structure of a CNN network. 34

3.9 The difference between non-deep and deep neural networks. 37

3.10 Taxonomy of deep learning techniques. 38

3.11 The general architecture of simple autoencoders and variational autoen-

coders. 39

3.12 The general architecture of adversarial autoencoders. 40

3.13 The structure of the GAN network. 41

xiii

3.14 General architecture of federated learning. 42

3.15 Categorization of federated learning. 44

3.16 The standard federated learning algorithm FedAvg. 47

5.1 Distributed learning of different variations of autoencoders (simple AE,

VAE, and AAE) for NIDS using FL. 67

5.2 Fed-ANIDS architecture which consists of 4 main components including,

global model initialization, local training, model aggregation, and model

dissemination. 68

5.3 Data preprocessing pipeline. 69

5.4 The distribution of benign and attack samples of USTC-TFC2016, CIC-

IDS2017, and CSE-CIC-IDS2018 datasets. 72

5.5 Comparion between Fed-ANIDSand centralized learning. 79

6.1 The overflow of the proposed design of experiments. 83

6.2 Distribued learning using federated learning. 86

6.3 All 32 combinations of idle and active timeouts 87

6.4 Performance evaluation of FL for distributed NIDS with different time-

outs on USTC-TFC2016 dataset. 93

6.5 Performance evaluation of FL for distributed NIDS with different time-

outs on CIC-IDS2017 dataset. 93

6.6 Performance evaluation of FL for distributed NIDS with different time-

outs on UNSW-NB15 dataset. 94

6.7 Performance evaluation of FL for distributed NIDS with different time-

outs on CUPID dataset. 94

6.8 Boxplot depicting F1-score variation of different timeouts considering all

preceding experiments. 95

7.1 Overview of FedBS . 103

7.2 Testing results on Cifar-10 dataset partitioned unequally. 105

7.3 Testing results on Cifar-10 dataset partitioned equally. 106

7.4 Testing results on balanced Mnist and Fashion-Mnist datasets. 106

7.5 Experiments results on unbalanced Mnist and Fashion-Mnist datasets. . . 107

7.6 Testing results on Cifar-10 dataset partitioned unequally (Local test). . . . 107

xiv

List of Tables

5.1 Notations used to describe various steps in the remaining of the chapter. . 68

5.2 Performance evaluation of Fed-ANIDS with USTC-TFC2016 dataset. 74

5.3 Performance evaluation of Fed-ANIDSwith CIC-IDS2017 dataset. 74

5.4 Performance evaluation of Fed-ANIDSwith CSE-CIC-IDS2018 dataset. . . 74

5.5 Baselines testing results of a simple AE trained on USTC-TFC2016, CIC-

IDS2017 and CSE-CIC-IDS2018 datasets seperatly. 76

5.6 Testing results of a simple AE trained on USTC-TFC2016 and CIC-IDS2017. 77

5.7 Testing results of a simple AE trained on USTC-TFC2016 and CSE-CIC-

IDS2018. 77

5.8 Testing results of a simple AE trained on CIC-IDS2017 and CSE-CIC-

IDS2018. 78

6.1 Set of features developed by our team. 85

6.2 Performance evaluation of ML models using the NFStream standard fea-

ture set with USTC-TFC2016. 89

6.3 Performance evaluation of ML models using the NFStream standard fea-

ture set with CIC-IDS2017. 89

6.4 Performance evaluation of ML models using the NFStream standard fea-

ture set with UNSW-NB15. 89

6.5 Performance evaluation of ML models using the NFStream standard fea-

ture set with CUPID. 89

6.6 Performance evaluation of ML models using all flow features (from 4

sources) with USTC-TFC2016. 90

6.7 Performance evaluation of ML models using all flow features (from 4

sources) with CIC-IDS2017. 90

6.8 Performance evaluation of ML models using all flow features (from 4

sources) with UNSW-NB15. 90

xv

6.9 Performance evaluation of ML models using all flow features (from 4

sources) with CUPID. 90

6.10 ETC model performance evaluation using feature selection with USTC-

TFC2016. 91

6.11 ETC model performance evaluation using feature selection with CIC-

IDS2017. 91

6.12 ETC model performance evaluation using feature selection with UNSW-

NB15. 92

6.13 ETC model performance evaluation using feature selection with CUPID. . 92

8.1 Set of features proposed in [129]. 134

8.2 Set of features proposed in [130]. 135

xvi

1 Introduction

Since the creation of the first computer virus Creeper in 1972 by Bob Thomas, attacks

have increasingly become more complex and sophisticated, especially following the

transition from ARPANET to the Internet in the 1980s. Since then, the Internet wit-

nessed exponential growth in usage (Figure 1.1) and has become a defining charac-

teristic of the digital age, driven by the widespread adoption of online services, the

proliferation of connected devices, and the growing importance of digital communi-

cation. Everyday activities, once constrained by physical boundaries, are now effort-

lessly conducted in the virtual realm. From booking flights to paying bills, the Inter-

net has become the invisible hand guiding our daily lives. We even seamlessly move

substantial funds in the blink of an eye. The Internet’s role as the virtual vault for our

financial and personal data, while undeniably convenient, can’t help but cause some

unease in those who understand the inherent risks of this interconnected world. In

fact, this surge in usage has created an expansive attack surface for cyber threats. As

technology advances, so do the methods employed by malicious actors seeking to

exploit vulnerabilities in the digital ecosystem [1]. Data breaches are alarmingly in-

creasing in both magnitude and frequency, ransomware attacks are escalating at an

unprecedented rate, and zero-day attacks are grabbing headlines. Meanwhile, tra-

ditional defenses such as firewalls and antiviruses are crumbling, and can no longer

stand alone as the sole line of defense for networks in today’s complex cyber threat

landscape.

1

Figure 1.1: Growth of Internet use between 1994 and 2021 (source: ITU).

Within this context, network security has received a lot of attention from security

researchers, as well as cybersecurity companies, striving to thwart cyberattacks. One

of the most common Network Security Systems (NSS) used to secure networks is

known as Intrusion Detection System (IDS). An IDS is a software or device that ana-

lyzes all traffic flowing through a network for potential intrusions and notifies the ad-

ministrator upon detection so that they can be promptly addressed. While firewalls

act as the first line of defense, effectively filtering out known threats, IDS provide an

additional layer of security by actively monitoring network traffic for suspicious ac-

tivity, thereby enhancing the overall cyber security posture. One of the key mottoes

of information security by Eric Cole [2] is “Prevention is Ideal, but Detection is a Must”.

Decades of research have yielded a rich landscape of intrusion detection systems,

giving rise to multifaceted IDS categorizations (see Chapter 2.3). Traditionally, IDS

can be categorized based on several criteria, e.g., the analysis mode (real-time or of-

fline) and the data processing architecture (centralized or distributed). The most fun-

damental classifications, however, lie in their detection technique and data source.

When considering the detection method, two primary types of IDS exist: signature-

based (SIDS) and anomaly-based (AIDS) systems. The former relies on a database

of known signatures to identify attack attempts, while the latter identifies potential

anomalies by detecting deviations from a pre-established baseline of normal traffic.

2

On the one hand, SIDS such as Snort [3] and Suricata [4], can quickly respond to

known attacks with fewer false positives. However, they are unable to discover new

attacks or previously unseen threats (zero-day attacks) and require frequent main-

tenance to update them. On the other hand, AIDS [5, 6, 7] are more adaptive and

efficient in identifying new threats. This comes at the cost of being more vulnerable

to false positives due to the inherent complexity of the techniques often employed

for their implementation. Nevertheless, over the last two decades, extensive research

efforts have been directed toward anomaly-based IDS. On the other hand, IDS are

classified based on data sources into Host-based Intrusion Detection System (HIDS)

and Network-based Intrusion Detection System (NIDS). HIDS is deployed on indi-

vidual computers or servers, scrutinizing system logs, file integrity, and system calls

to uncover suspicious activities specific to the host. In contrast, NIDS concentrates

on monitoring network traffic for anomalies or patterns indicative of cyberattacks,

utilizing sensors positioned strategically within the network infrastructure. While

HIDS offers insights into host-specific activities, NIDS excels at detecting network-

wide threats. According to this survey [8] conducted across 213 diverse organiza-

tions, each with at least 1,000 employees, Network Intrusion Detection/Prevention

Systems (IDS/IPS) were heavily favored for network visibility securing the top posi-

tion with a 92% preference. While host-based solutions secured the fourth position

with a preference rate of 70% (see Figure 1.2).

Figure 1.2: Tools in use by organizations for network visibility according to SANS
2020 Threat Detection Survey.

The world of NIDS, in turn, boils down to two main approaches, packet-based

and flow-based, based on the source of data to be analyzed. Packet-based NIDS, also

called, "traditional NIDS", inspect the whole content of individual data packets be-

sides headers, providing a detailed view of network traffic. This in-depth analysis

3

1.1. Motivation

offers unparalleled precision, yet demands heavy resources, especially in high-traffic

networks. Moreover, the increase in Internet usage has led to a significant uptick in

Internet traffic. To meet the rising demand for data transmission, there have been

substantial improvements in network infrastructure, resulting in notable enhance-

ments in line speeds and bandwidth capacities. Nowadays, it is not uncommon to

have access speeds ranging from 1 to 10 Gbps. Most universities, governmental in-

stitutions, and large corporations networks are moving from speeds in the hundreds

of Mbps to speeds in the range of Gbps. Packet-based NIDS, however, are estimated

to have a processing capacity ranging from 100 to 200 Mbps [9, 10]. Given these chal-

lenges, flow-based NIDS emerged as a promising candidate. Flow-based NIDS focus

on the bigger picture [11], tracking and analyzing traffic flows rather than individ-

ual packets. A flow represents a sequence of packets between a specific source and

destination over a specified time period. By offering a holistic view of the network

behavior, this approach identifies suspicious patterns and trends within flows, while

conserving resources.

To extract network flow features, several tools are available such as NFStream

[12], CICFlowMeter1, and nProbe2. These tools are vital for collecting and analyz-

ing network flows, generally relying on a set of hyperparameters that configure and

govern various aspects of the feature extraction process. These hyperparameters in-

fluence how features are selected, extracted, and represented from the raw network

flow data, thus impacting the quality of the extracted features. One of these prop-

erties is the time interval, comprising two timeouts, an active and an idle (inactive)

timeout [13]. The active timeout denotes the duration of an established connection

during which data is actively transmitted between the source and the destination. In

contrast, the idle timeout represents the duration of inactivity within an established

connection. Modifying the values of these two parameters leads to the extraction of

different features, potentially influencing the performance of ML models that rely on

these features for their learning and decision-making processes.

1.1 Motivation

The phenomenal success of ML and DL techniques in areas such as image recognition

and text classification has motivated security researchers to adopt these algorithms

to IDS. Considering their potential to learn directly from the data, ML and DL algo-

1https://github.com/ahlashkari/CICFlowMeter
2https://www.ntop.org/guides/nprobe/cli_options.html

4

1.1. Motivation

rithms are particularly beneficial for IDS given the diverse nature of network traffic.

ML and DL algorithms can discern intricate patterns, anomalies, and subtle devia-

tions from normal behavior in network traffic, making them particularly well-suited

for the complex and evolving nature of cybersecurity challenges. However, through

our research on ML and DL-based IDS, we’ve identified three areas that, we believe,

need further investigation and improvement to address existing limitations and op-

timize the effectiveness of these algorithms in real-world cybersecurity scenarios.

First, despite the considerable number of ML and DL-based techniques proposed

for IDS [14], the majority of them require centralizing all data for training purposes.

Although this approach can provide high accuracy and performance in detecting

threats, is not always feasible due to many constraints [15, 16]. Centralizing data may

introduce a single point of failure, where the central server becomes a critical compo-

nent, and any failure or compromise can impact the entire system. Let alone network

latency and scalability issues, especially in large-scale networks. Moreover, beyond

the operational challenges, the data gathered at the server may contain private sen-

sitive users’ information like personal details or financial transactions, which should

not be publicly disclosed. Consequently, the adoption of centralized approaches can

pose significant hurdles related to maintaining data confidentiality, integrity, and

availability. The aggregation of sensitive information in one location increases the

vulnerability to security breaches and unauthorized access. This is further exacer-

bated by the necessity to comply with strict privacy regulations, where mishandling

or compromise of centralized data can result in legal consequences and reputational

damage for the organizations.

Second, the quality of data features holds paramount importance for any ML/DL

task. While sophisticated ML/DL algorithms fuel modern IDS, it’s the raw data they

feed on that truly determines their effectiveness. The performance of these algo-

rithms, as intricate robots, is heavily dependent on the quality of the data they’re

given [17]. In the case of intrusion detection, selecting and extracting pertinent fea-

tures from network traffic data is crucial for the overall performance and accuracy

of these ML-based IDS solutions. Considered the building blocks of the algorithms,

these features act as crucial indicators that aid in the identification of patterns asso-

ciated with potential threats. Therefore, the meticulous process of feature extraction

plays a critical role in enhancing the systems’ capabilities to not only identify but

also effectively mitigate emerging cyber threats. Moreover, the quality of features

extracted directly impacts the algorithms’ ability to adapt to evolving threat land-

scapes. In essence, the more accurate and pertinent the features, the more adeptly

5

1.2. Research questions and contributions

the ML-based IDS can recognize and respond to new and sophisticated forms of cy-

ber attacks. Therefore, investing in refining and optimizing the feature extraction

process becomes instrumental in fortifying the resilience and efficacy of IDS, ensur-

ing they remain agile and effective in the face of dynamic cybersecurity challenges.

Consequently, the feature extraction process significantly impacts these systems’ ca-

pabilities to identify and effectively mitigate emerging threats.

Third, the integration of FL into applications, particularly IDS signifies a promis-

ing leap toward addressing the challenges associated with centralized methods.

However, there are two sides to every coin, and this transformative approach is no

exception. FL presents its own set of challenges, from communication bottleneck to

poisoning attacks and scalability issues. However, one of the primary issues is the de-

ployment of FL in heterogeneous systems, characterized by diversity in device capa-

bilities and data distributions. Data distribution challenges in particular can hinder

the convergence of the collaborative model. Diversity and variability in the qual-

ity and quantity of data across devices may impede the establishment of a cohesive

global model. Specifically, if the data across different entities in FL is not IID, the

learning in a FL setting becomes challenging. Most decentralized ML algorithms are

envisioned with IID data in mind, implying that the datasets from different devices

follow the same statistical distribution. However, in real-world situations, the data

is commonly generated in different contexts, time windows, and locations. Thus,

the IID assumption does not hold and the distribution of data stored across edge de-

vices is not drawn from some global distribution and hence not representative of the

overall distribution (non-IID data). In such scenarios, the model may struggle to gen-

eralize effectively, leading to suboptimal performance and potentially hindering the

intended improvements in accuracy and efficiency.

1.2 Research questions and contributions

In light of what we have previously discussed, the goal of this thesis is to design effi-

cient anomaly-based network intrusion detection systems, that can detect intrusions

effectively while incurring low false positive rates. The latter could be accomplished

by investigating the following directions: 1) Leveraging the FL approach to tackle

the challenges of data privacy and scalability in NIDS. 2) Investigating the quality

of data features on the overall performance of NIDS. To achieve these objectives, we

will address the following research questions:

6

1.2. Research questions and contributions

Research Question 1: What challenges do current centralized ML/DL-based

NIDS approaches encounter in real-world applications? And what are the lim-

itations of existing NIDS datasets?

Research Question 2: How can we mitigate the challenges of centralized NIDS

approaches using FL?

Research Question 3: How does the quality of network data features affect the

performance of NIDS?

Research Question 4: What are the new challenges created by using decentral-

ized approaches for distributed systems?

Network intrusion detection has a long history of exploration, with numerous

proposed methods over the years. To answer the Research Question 1, we start this

thesis by studying existing works in the field and highlighting their challenges. Ad-

ditionally, we discuss the drawbacks and limitations of benchmark network-based

datasets and their impact on the development and performance of NIDS.

To answer Research Question 2, we propose a decentralized network intrusion

detection method based on FL and autoencoders. The proposed method enables col-

laborative and secure learning of a global model for network intrusion detection by

allowing each entity in the system to learn locally with its own data. To achieve this,

we utilize autoencoders to build an anomaly-based system to detect possible attacks.

Initially, each entity preprocesses its local data and trains the local model using only

normal instances. Then, when all the entities complete the local training, the weights

of local models are sent back to the server for aggregation. Finally, when the train-

ing is completed and convergence is reached, a threshold selection is performed to

find the threshold value, the latter will be used in the detection phase. The main

contributions of the paper are the following:

1. We propose, an autoencoder-based method for decentralized network intru-

sion detection systems by leveraging FL and anomaly detection. Furthermore,

we study the impact of two FL methods, namely FedProx and FedAvg, on the

model’s performance in the context of NIDS.

2. We use more reliable flow features extracted from well-known NIDS datasets

in an attempt to handle challenges related to flow construction, labeling, and

attack simulation.

7

1.2. Research questions and contributions

3. We conduct extensive evaluations using the various NIDS datasets. We also

compare our method with Generative Adversarial Network-based models

(GAN) that have been utilized for distributed NIDS in the literature. More-

over, we build and evaluate various scenarios to measure and investigate the

generalization performance of our method with unseen datasets.

The purpose of Research Question 3 is to shed light on the limitations of the ex-

isting state-of-the-art NIDS datasets. We address a particular facet of the issue at the

level of network flow feature extraction. We provide an in-depth examination of the

influence of flow timeouts (idle and active timeouts) values on the overall perfor-

mance of ML models in detecting security threats. The main contributions are:

1. We conduct a thorough examination of the effects of different active and idle

timeout values on the performance of ML models in the context of NIDS.

2. We assess the effectiveness of a variety of ML models, including ETC, RFC, and

MLP models. This comprehensive evaluation offers insights into the suitabil-

ity of various models for NIDS with various combinations of idle and active

timeouts.

3. We assess the models’ performance using distinct sets of features for each idle

and active timeout couple. This analysis seeks to identify whether a specific

flow timeout excels in performance.

4. We model a realistic scenario involving distributed NIDS instances, each own-

ing data extracted using distinct idle and active timeouts. For this purpose, we

explore FL and assess its performance to determine whether it introduces note-

worthy enhancements. This investigation into FL extends our understanding

of its potential in the field of heterogeneous NIDS.

The integration of FL into NIDS signifies a promising leap toward addressing

the challenges associated with centralized methods. However, there are two sides to

every coin, and this transformative approach is no exception. FL presents its own set

of challenges. To answer Research Question 4, we discuss the traditional challenges

of FL, particularly in the case of implementing FL for NIDS. We then propose a new

method to handle the specific challenge of data heterogeneity for ML models with

batch normalization layers. This work’s main contributions are as follows:

8

1.3. Thesis outline

1. We highlight the challenges of non-IID data and their impact on ML/DL mod-

els, especially those trained with batch normalization layers.

2. We propose a novel FL approach leveraging local batch statistics when using

DL models with normalization layers in FL. The proposed method modifies the

naive way of computing the weight vector of the local models based on the data

size only.

3. We empirically demonstrate that our proposed approach outperforms both

classical FedAvg, as well as the state-of-the-art FedProx through a comprehen-

sive set of experiments conducted on various datasets under different non-IID

data settings.

1.3 Thesis outline

Figure 1.3: Thesis outline.

Figure 1.3 presents an overview of the structure of the dissertation. The remainder

of this dissertation is structured as follows:

• Part I introduces the key concepts and information needed to navigate the

depths of this dissertation. Furthermore, it discusses the existing body of work

in both FL and IDS domains, establishing a comprehensive overview of the re-

search field.

– Chapter 2 introduces intrusion detection systems, its definition, catego-

rizations, and datasets.

– Chapter 3 gives a ML introduction including the different paradigms and

tasks of ML, as well as various models and evaluation metrics. Addition-

ally, it delved into the subfield DL and the decentralized framework FL.

– Chapter 4 discusses the application of ML/DL models and FL methods

for intrusion detection and discusses existing work in the literature.

9

1.4. Publications

• Part II presents our contributions in both fields of intrusion detection and FL.

– Chapter 5 presents our autoencoder-based distributed learning frame-

work for NIDS, called Fed-ANIDS. It describes its different components

and discusses the evaluation results.

– Chapter 6 introduces the different components of the experimental design

to study the impact of flow timeouts on the performance of NIDS. Then

it describes the implementation details and the experimental results and

findings.

– Chapter 7 highlights the different challenges of the proposed methods and

proposes a novel method to address the specific challenge of data hetero-

geneity.

• Chapter 8 concludes the thesis by drawing conclusions, findings, and future

works.

1.4 Publications

• FEDBS: Learning on Non-IID Data in Federated Learning using Batch Normal-

ization. Meryem Janati Idrissi, Ismail Berrada and Guevara Noubir. In 2021

IEEE 33rd International Conference on Tools with Artificial Intelligence (IC-

TAI), pp. 861-867, 2021.

• Fed-ANIDS: Federated learning for anomaly-based network intrusion detec-

tion systems. Meryem Janati Idrissi, Hamza Alami, Abdelkader El Mahdaouy,

Abdellah El Mekki, Soufiane Oualil, Zakaria Yartaoui and Ismail Berrada. In

Expert Systems with Applications, vol. 234, no. , pp. 0957-4174, 2023.

• Flow timeout matters: Investigating the impact of active and idle timeouts

on the performance of machine learning models in detecting security threats.

Meryem Janati Idrissi, Hamza Alami, Abdelkader El Mahdaouy, Abdelhak

Bouayad, Zakaria Yartaoui, and Ismail Berrada. Submitted to Future Gener-

ation Computer Systems Journal, Elsevier.

10

Part I

Concepts & Related Work

Part I serves as an introduction to the key concepts and technologies employed in

the scope of this thesis. This part is divided into three main chapters. The first

chapter defines intrusion detection, reviews the different types of IDS, and discusses

various network-based datasets. The second chapter provides a detailed

introduction to ML, DL, and FL. The last chapter discusses ML, DL, and FL for

anomaly-based intrusion detection.

11

2 Intrusion Detection Systems

2.1 Introduction

Confidentiality, integrity, and availability, collectively known as the C.I.A triad (Fig-

ure 2.1), constitute three essential pillars of information security. An "intrusion" refers

to any unauthorized or malicious activity that undermines one, both, or all of these

integral components within an information system. It encompasses actions that vio-

late the established security policies and threaten the security of a computer system,

network, or application. Intrusions can take various forms, including unauthorized

access attempts, exploitation of vulnerabilities, injection of malicious code, or any

other activity that could potentially lead to a security breach.

• Confidentiality: It ensures that information is accessible only to authorized in-

dividuals, safeguarding against unauthorized access and disclosure. This is

often achieved through encryption, access controls, and user authentication

mechanisms. Data classification plays a crucial role in categorizing informa-

tion based on its sensitivity and applying appropriate access restrictions.

• Integrity: It focuses on maintaining the accuracy and trustworthiness of data

by guarding against unauthorized alterations. Hash functions and checksums

are employed to verify data integrity. Digital signatures provide a way to au-

thenticate the source and integrity of messages or documents. Access controls

and version control systems contribute to maintaining data integrity.

12

2.2. Definition

• Availability: It ensures that information and resources are consistently acces-

sible and usable by authorized users when needed. Redundancy and fault-

tolerant systems are implemented to mitigate the impact of hardware failures

or other issues. Disaster recovery planning and regular system monitoring con-

tribute to ensuring the continuous availability of critical systems.

Figure 2.1: The C.I.A triad.

The process of monitoring and analyzing network or system activities to identify

and respond to suspicious or malicious behavior is identified as "intrusion detection".

Any software or hardware designed to perform intrusion detection is categorized as

an IDS.

2.2 Definition

An IDS acts as a digital guardian, that serves as a vital component of cybersecurity,

providing an additional layer of defense against potential threats. IDS operates by ex-

amining network traffic or system logs for patterns indicative of unauthorized access,

attacks, or abnormal activities. They detect and deal with insider attacks, as well as,

external attacks. Upon detection, the IDS generates alerts and notifies administrators

or takes predefined actions to mitigate the threat, for instance, collecting the alarms

through the use of a Security Information and Event Management (SIEM) system. A

SIEM system offers immediate analysis of outputs from various sources, correlating

diverse alerts to present a comprehensive perspective on IT security.

IDS are at times confused with other security tools, such as firewalls and Intru-

sion Prevention Systems (IPS). Despite their shared objective of safeguarding systems

within a network, these security mechanisms operate through distinct means. Fire-

13

2.3. Types of intrusion detection systems

walls act as a protective barrier between trusted internal networks and untrusted

external networks, regulating incoming and outgoing network traffic based on pre-

defined security rules. They analyze packets’ headers to filter the traffic based on IP

address, protocol, port number, etc. Firewalls should be placed as the first line of

defense. On the other hand, Intrusion Prevention System (IPS) go beyond the capa-

bilities of IDS by not only detecting but also actively blocking or preventing identified

malicious activities. While IDS emphasize detection and alerting, IPS take immediate

action to thwart potential threats, contributing to a more proactive security posture.

Recognizing the nuanced roles of IDS, firewalls, and IPS is imperative for organi-

zations to implement a comprehensive security strategy that effectively addresses

various aspects of network protection.

2.3 Types of intrusion detection systems

IDS can be categorized into several types based on many characteristics as illustrated

in Figure 2.2, each serving specific security needs within a networked environment.

One of these characteristics is the deployment method which defines the location of

the IDS and the type of activities that are inspected. Therefore, an IDS could be Host-

based (HIDS), Network-based (NIDS), or Application-based IDS (AppIDS).

Figure 2.2: Taxonomy of intrusion detection systems.

• Host-based IDS [18] are installed on individual hosts or devices, closely mon-

itoring activities like file modifications, login attempts, or system calls. HIDS

analyzes host-specific behaviors, comparing them to predefined rules or base-

14

2.3. Types of intrusion detection systems

lines to identify any deviations that may signify intrusions or anomalies at the

host level.

• Network-based IDS [19] are strategically deployed at key points in the network

infrastructure, such as routers or switches, to analyze real-time traffic and de-

tect patterns indicative of known attacks or anomalies. NIDS primarily focus

on monitoring network-level activities, providing insights into unauthorized

access attempts, malware presence, or unusual data transmission patterns.

• Application-based IDS [20] are a specialized type of HIDS designed to moni-

tor and protect specific applications within a computing environment. Unlike

network-based or host-based IDS that operate at broader levels, Application-

based IDS focuses specifically on the security of individual software applica-

tions.

IDS are also categorized based on their detection methods, which describe how

the detection engine works. Signature-based Intrusion Detection System (SIDS),

Anomaly-based Intrusion Detection System (AIDS), and Hybrid detection are three

primary types.

• Signature-based IDS, also known as misuse detection, operate on the funda-

mental principle of recognizing known attack patterns through a comprehen-

sive database of attack signatures. This type of IDS scrutinizes incoming net-

work traffic or system activity, comparing observed data against a repository

of predefined signatures that represent distinct characteristics of previously

identified threats. These signatures can manifest in various forms, ranging

from simple sequences of bytes or characters to more complex representations

such as branching tree diagrams. The IDS essentially functions as a vigilant

gatekeeper, scanning the input stream for any matches with the stored signa-

tures. Similar to the methodology employed by traditional antivirus software,

signature-based IDS excels at the precise identification of known threats, en-

suring a high level of specificity in threat detection. However, its effectiveness

is inherently constrained by its reliance on a static signature database, making

it less adaptive to emerging or novel threats (zero-day attacks). Regular and

timely updates to the signature database are imperative to enhance the IDS’s

capability to recognize the latest attack patterns.

• Anomaly-based IDS employ a distinct approach to safeguard computer net-

works and systems by focusing on deviations from established patterns of nor-

15

2.4. Flow-based network anomaly detection

mal behavior. Instead of relying on a predefined database of attack signatures,

this type of IDS creates a baseline of expected or typical activities within the

network or system. It continuously monitors and learns the usual patterns, gen-

erating alerts or responses when observed behavior deviates from this baseline.

AIDS is particularly adept at identifying novel or previously unseen attacks,

as it doesn’t rely on predetermined signatures for detection. This adaptabil-

ity makes it a valuable asset in addressing emerging threats that may not con-

form to known attack patterns. The system analyzes various parameters, in-

cluding network traffic, user behavior, or system processes, to discern anoma-

lies that might indicate a potential security breach. However, AIDS is more

vulnerable to false positives due to the inherent complexity of the techniques

often employed for their implementation. Different techniques are used for

AIDS. Statistical-based, data mining-based, knowledge-based, and ML-based

anomaly detection are the most used techniques. The complete taxonomy of

AIDS is illustrated in Figure 2.3. Section 4.2 and 4.3 discuss the ML and DL-

based techniques, which are the focus of this thesis.

• Hybrid detection represents a sophisticated approach that combines the

strengths of both Signature-based and Anomaly-based methodologies to pro-

vide a comprehensive and adaptive security solution. In a hybrid model, the

IDS leverages a database of known attack signatures, similar to the Signature-

based approach, allowing for precise identification of well-defined threats

based on historical knowledge. Simultaneously, it incorporates anomaly-based

detection, creating a baseline of normal behavior to identify deviations that

might signify novel or previously unseen attacks. This dual-layered strategy

aims to enhance the overall efficacy of intrusion detection by offering both

specificity for known threats and adaptability to emerging or sophisticated at-

tacks.

2.4 Flow-based network anomaly detection

2.4.1 IP flows

Traditionally, NIDS employ Deep Packet Inspection (DPI) [21] which involves a thor-

ough analysis of the data packets traveling through a network. Each packet contains

information about its source, destination, content, and other relevant details. DPI

16

2.4. Flow-based network anomaly detection

Figure 2.3: Taxonomy of anomaly-based intrusion detection system.

goes beyond merely examining the headers of these packets; it delves deep into the

packet’s payload, inspecting the actual data within. By inspecting the contents of

data packets, payload-based NIDS can identify known attack signatures, unusual

data patterns, or deviations from normal network behavior. However, inspecting the

entire payload incurs significant computational overhead and hinders performance,

especially in high-speed IP networks [22]. Moreover, the proliferation of encrypted

protocols in network traffic adds substantial complexity to the task of implementing

packet-based NIDS [23].

With these challenges in mind, researchers have shifted their attention toward

flow-based methods [11]. Figure 2.4 shows the evolution of payload-based and flow-

based intrusion detection. Flow-based NIDS leverage network flow records as their

input source to detect potentially malicious activities. In the context of computer net-

works, a flow refers to a sequence of packets that share certain common attributes and

17

2.4. Flow-based network anomaly detection

characteristics as they traverse a network. In contrast to payload-based NIDS, flow-

based NIDS deal with considerably reduced amounts of data as only the flow records

are analyzed. In other words, with such systems, the aggregated information of the

network is inspected instead of the content of data packets. According to a study that

was conducted on the University of Twente (UT) network [13], the analysis of flow

packets within a network typically accounts for approximately 0.1% of the overall

network traffic. For network load, the added overhead resulting from flow collection

and export protocol (NetFlow) averages around 0.2%. Another advantage of flow-

based NIDS is the ease with which flow data can be collected from network devices

that employ standard and widely recognized protocols such as Cisco, NetFlow, and

IETF IPFIX, without the need for additional software installations. Flow-based NIDS

are therefore a rational choice for high-speed networks.

The IP Flow Information Export (IPFIX) proposed a standard definition of net-

work flow [24]:

“A Flow is defined as a set of packets or frames passing an observation Point in

the network during a certain time interval. All packets belonging to a particular

Flow have a set of common properties.“

These properties are called flow keys and typically are a 5-tuple consisting of the

source and destination IPs and ports and the protocol:

(ip_src,ip_dst,port_src,port_dst,proto)

The typical structure of a network flow monitoring tool consists of three main

steps: packet observation, flow metering and export, and flow collection. First, the packet

observation stage is designed to capture packets from an observation point and pre-

process them. Next, the metering process generates flow records based on headers

extracted from packets collected from the observation point. Each header is then

marked with a timestamp. Every incoming packet header initiates an update to an

existing flow entry in the flow cache used to temporarily store flow entries and main-

tain a record of active flows in real-time. If the packet header matches an existing

entry then the flow features are updated. Otherwise, a new flow entry is initiated.

A flow record is forwarded to the collecting process once it has expired. For both

NetFlow [25] and IPFIX [26], the metering process terminates a flow record for the

following reasons:

- Active timeout: Flows that remain active beyond this specified time duration

are considered expired and the corresponding flow records are sent to the flow

18

2.4. Flow-based network anomaly detection

collector. Common timeout values typically fall within the range of 2 minutes

to 30 minutes (NetFlow).

- Idle timeout: If no packets have been observed in the flow for a longer time than

this value then the flow is expired. Common timeout durations vary from 15

seconds (NetFlow) to 5 minutes.

- Natural expiration: The detection of a Transmission Control Protocol (TCP)

packet with either the FIN or RST flag set indicates the termination of the TCP

connection.

- Emergency expiration: If the flow cache memory is exhausted, a subset of flow

entries are immediately terminated and exported to the collector.

Finally, the flow collector stores flow records in a format suitable for subsequent

monitoring or analysis.

Figure 2.4: The evolution of intrusion detection and flow-based technologies (source:
(Sperotto et al., 2010)).

2.4.2 Active and idle timeouts

In the realm of networking, active and idle timeouts are two parameters that are com-

monly used in various network protocols and devices to manage flows (network con-

nections and sessions). Active timeout, sometimes termed connection timeout, places

a predetermined limit on the maximum duration a flow can remain open, irrespective

of data activity. It measures the time between successive packets or data exchanges.

If no data is transmitted within the specified period, the flow may be considered inac-

tive or stalled, and the active timeout timer will start counting down. Once the active

timeout expires, the flow is terminated. The principal purpose of active timeout is to

19

2.4. Flow-based network anomaly detection

prevent flows from persisting indefinitely, thereby conserving resources and ensur-

ing network health. Active timeouts are fundamental to network protocols like TCP,

contributing significantly to the maintenance of flow integrity and the prevention of

resource exhaustion.

Figure 2.5: Active timeout.

Idle timeout, also referred to as inactive timeout, is the period of inactivity be-

tween a source and a destination before the flow is considered idle and subsequently

terminated. It measures the duration during which there is no data transmission oc-

curring between the two endpoints. When the idle timeout expires, the flow is closed,

and the resources associated with that connection are freed up for other tasks. This

helps prevent flows from being kept open indefinitely when there is no ongoing com-

munication. Therefore, idle timeout plays a central role in minimizing security risks

by closing idle connections as well as optimizing the allocation of incoming network

traffic. Figures 2.5 and 2.6 provide illustrative representations of the active and idle

timeouts respectively.

Figure 2.6: Idle timeout.

The values of idle and active timeouts in network flow analysis hold a substantial

influence over the features extracted from the data, and consequently, may impact

the performance of ML models optimized with these features. These timeout param-

eters influence the granularity and relevance of the extracted features. For instance,

shorter idle and active timeouts can yield finer-grained features that capture transient

or rapid changes in network activity, while longer timeouts tend to result in coarser

features representing broader time intervals. Moreover, these choices bear on the

level of noise reduction within the data; shorter timeouts may help filter out idle or

20

2.5. Network-based intrusion detection datasets

sporadic connections but risk discarding benign ones, whereas longer timeouts could

introduce more noise. Furthermore, the sensitivity of the model to network dynamics

and its computational resource utilization are both affected by the choice of timeout

values. Striking the right balance between capturing fine details and managing re-

sources is essential for optimal model performance, as is ensuring that the selected

timeout values align with the specific network environment and analytical goals, ul-

timately influencing the model’s ability to detect patterns and anomalies effectively.

2.5 Network-based intrusion detection datasets

Network-based datasets play a crucial role in both the development and validation of

NIDS [27]. They enable the comparison of various NIDS solutions, assisting security

professionals in selecting the most suitable options for their specific environments.

In the following paragraphs, we will discuss some of the key and most up-to-date

NIDS datasets used within the scope of this thesis. We will also highlight some of the

limitations associated with these datasets addressed in the literature.

USTC-TFC2016 [28] is a prominent dataset that primarily contains two parts. The

first part is composed of 10 varieties of malware traffic collected from public websites

hosted in a real network environment within the time period 2011 to 2015. The second

part contains ten genres of normal traffic collected using IXIA BPS 1. This dataset

comes in PCAP format with a total size of 3.71 GB.

CIC-IDS2017 [29] is a state-of-the-art network intrusion detection dataset created

by the Canadian Institute for Cybersecurity (CIC). It provides real-world network

traffic data ("Benign" and "Attacks") in the PCAP format collected during the period

of five days (Monday through Friday) in a controlled environment, aiming to sim-

ulate realistic network scenarios for analyzing and developing intrusion detection

techniques.

CSE-CIC-IDS2018 is an improved version of the renowned CIC-IDS2017 dataset.

It was generated and launched by The Canadian Institute for Cybersecurity in

2018/20192. It represents a significant improvement over its predecessor, incorpo-

rating up-to-date attack types and more comprehensive network intrusion scenarios.

CSE-CIC-IDS2018 consists of seven up-to-date attack types including Botnet, Brute-

1https://www.ixiacom.com/products/breakpoints
2https://www.unb.ca/cic/datasets/ids-2018.html

21

2.5. Network-based intrusion detection datasets

force, Denial of Service and Distributed Denial of Service, Heartbleed, Inside Net-

work Infiltration, and Web Attacks.

UNSW-NB15 [30] is a modern KDD-19 alternative created and released in 2015.

The IXIA PerfectStorm tool was used to create a hybrid testbed-based normal and

abnormal network traffic. 87.35% of the data is benign flows while the 12.65% left is

attack flows. The dataset consists of nine attack classes, namely, Fuzzers, Reconnais-

sance, DoS, Backdoors, Generic, Analysis, Worms, Shellcode, and Exploits. Note that

the traffic was captured in the PCAP format.

CUPID [31] 3 is a recent dataset that was created specifically for evaluating

NIDS. CUPID was annotated with penetration testing to reflect both automated and

human-generated attacks. It provides diverse attack types, including, Webcrawling,

ARP, nmap, recorded live user interaction, DNSMap, Dig, Nslookup, DNSTracer,

Password Brute Forcing, SQLi, Directory Traversal, DHCP attacks, STP, and Delivery

of Reverse Meterpreter Shell. The dataset was captured in the PCAP format and

processed using CICFlowMeter comprising approximately 50 GB.

ML algorithms thrive on data, both in quantity and quality. Adequate data is es-

sential for the training and evaluation of ML algorithms, playing a pivotal role in the

success of any ML task including intrusion detection. The quality of NIDS datasets is

therefore of paramount importance for reliable and accurate systems. Nevertheless,

because of the challenges involved in acquiring realistic labeled network data flows,

researchers have developed benchmark NIDS datasets by simulating network be-

haviors in controlled testbed environments [27]. Using appropriate tools and frame-

works, network flows are generated through several phases including data collection,

labeling, and feature extraction. Nevertheless, multiple investigations revealed that

NIDS datasets exhibit various deficiencies within one or more of these phases. In the

following, we discuss works that analyzed NIDS datasets and pinpointed some of

their shortcomings and flaws. This survey [32] on network threats and NIDS datasets

raised a valid concern regarding the limitations of NIDS datasets. Current datasets

in use for NIDS are often outdated and cover only 33.3% of known attacks. The pa-

per also pointed out that the existing NIDS datasets are not representative enough of

real-world traffic and include a limited variety of network attack types. Therefore, the

current dataset might not be sufficient to keep up with the ever-evolving and com-

plex threat landscape in addition to their effect on the building of NIDS. Likewise,

3The Colorado University Pentesting Intrusion Dataset (CUPID) https://cupid.directory/

22

2.6. Summary

Sarhan et al. [33] highlighted some limitations of existing NIDS datasets, particu-

larly, the lack of a common ground feature set shared among datasets. This makes it

difficult to fairly evaluate ML models’ performance and their generalization ability

across different datasets. To overcome this limitation, the authors proposed to use a

standardized feature set that can be used by researchers to train and cross-evaluate

various NIDS models. Engelin et al. [34] investigated the widely-used dataset CIC-

IDS2017 and identified some major flaws related to flow construction, feature extrac-

tion, and labeling process. In their attempt to fix these issues, the authors released

an update of CICFlowMeter. CSE-CIC-IDS2018 dataset 4 which is considered a reli-

able and updated version of CIC-IDS2017 was also found to be flawed [35] through

a series of experiments. These issues are mainly related to feature generation and

labeling.

The studies and analyses discussed reveal that the publically available NIDS

datasets have various issues that can significantly impact the quality and perfor-

mance of NIDS. As NIDS rely on these datasets for training and evaluation, the

presence of flaws can hinder their ability to accurately detect and respond to security

threats. Therefore, identifying and addressing these dataset limitations and enhanc-

ing their quality is crucial for the development and improvement of NIDS.

2.6 Summary

This chapter gave essential background information on intrusion detection. It com-

menced by offering a clear definition of an IDS and highlighting its pivotal role in

cybersecurity. Moving forward, the chapter explored the diverse taxonomies of IDS

based on two key characteristics, deployment method, and detection method. The

details of these taxonomies were thoroughly examined to provide a comprehensive

understanding. We then discussed the main two methods for network intrusion

detection, namely, payload-based and flow-based network intrusion detection, em-

phasizing the transition from payload-based to flow-based methodologies and un-

derscoring the evolving landscape and contemporary trends in intrusion detection

strategies. In the same section, we defined IP flows within the context of network

monitoring and we sketched the main phases of the flow creation process with a

particular emphasis on active and idle timeouts. Finally, we presented various well-

known and publically available IDS datasets that were used within the scope of this

thesis.

4https://www.unb.ca/cic/datasets/ids-2018.html

23

2.6. Summary

The following chapter will present the key concept of ML and its subfields DL

and FL.

24

3 Machine Learning

Introduction

3.1 Introduction

Artificial Intelligence (AI) stands out as one of the most revolutionary technologies in

the 21st century, fostering significant advancements across diverse industries, reshap-

ing the employment landscape, and transforming the way societies function. This

transformative field encompasses a spectrum of disciplines such as computer sci-

ence, mathematics, and philosophy, aiming to create intelligent systems that emulate

human-like cognitive functions. At its core, AI seeks to develop machines capable of

learning, reasoning, problem-solving, and adapting to diverse scenarios. Unlike tra-

ditional tools confined to pre-defined rules and routines, AI delves into the vast ocean

of data, unearthing hidden patterns and insights invisible to human eyes. This ability

to learn from experience, adapt to evolving scenarios, and make predictions based on

complex relationships transcends what any previous technology could achieve. ML,

a sub-discipline of AI, has emerged as a key component in the evolution of this field.

The availability of vast datasets and advancements in computing power have fueled

the explosion of ML techniques. One of the most intriguing developments in ML is

the emergence of DL, a subset of ML that mimics the human brain’s neural networks.

DL revolutionized AI, achieving remarkable breakthroughs in areas such as image

recognition, natural language processing, and robotics.

25

3.2. What is machine learning?

Figure 3.1: Classical programming vs machine learning.

3.2 What is machine learning?

ML is a subfield of AI, focused on the development and application of algorithms that

allow computers to learn patterns and make predictions or take actions based on past

experiences without being explicitly programmed [36]. Unlike traditional program-

ming, where rules are explicitly defined, ML models learn by analyzing data (Figure

3.1). This data can be anything from text and images to numbers and sensor read-

ings. Through various algorithms, the models discover patterns and relationships

within the data, such as correlations between features or specific sequences that in-

dicate certain events. Once trained, the models can then use the learned patterns

to make predictions on new, unseen data. This could involve tasks like classifying

emails as spam or not spam, recognizing objects in images, or even generating new

creative content like music or poems. ML has attracted increasing attention from both

academia and industry and is being applied in a wide range of fields such as health-

care, finance, recommendation systems, and network traffic analysis. At its core, ML

follows a dual-phase approach: (i) First, in the training phase, the model is fed a

large and diverse dataset of examples called the "training data". Algorithms come

into play during this phase. They analyze the training data, uncovering patterns and

relationships between features. Based on these patterns, the algorithm constructs a

mathematical model that captures the essence of the data. (ii) Once the model has

been optimized, it’s time to assess its performance. The model is applied to a new

set of data called the "test set," one it hasn’t seen before. The predictions on this set

are compared to the actual values, providing an early measure of its accuracy and

generalizability.

26

3.2. What is machine learning?

Figure 3.2: Training process of supervised learning algorithms.

3.2.1 Machine learning paradigms

ML encompasses various paradigms or approaches, each tailored to specific types of

problems and data. This section discusses some key ML paradigms in detail.

Supervised learning. This type of learning is the most frequently used. In super-

vised learning, as shown in Figure 3.2, the algorithms are trained on labeled datasets

to build a model. This data consists of pairs where each data point (input) is accom-

panied by a pre-defined label (output). The central objective of supervised learning

is for the algorithm to learn the underlying patterns and relationships within the

data, enabling it to make accurate predictions or classifications on new, unseen data.

During the training phase, the algorithm iteratively adjusts its internal parameters to

minimize the difference between its predictions and the actual labeled outputs. This

process allows the model to generalize from the training data, making it capable of

making informed decisions on novel inputs. During the testing phase, the model

uses its learned map to assign labels to new data points. Supervised learning finds

extensive applications in various domains, including image and speech recognition,

natural language processing, medical diagnosis, and financial forecasting. The ef-

fectiveness of supervised learning lies in its ability to leverage labeled examples to

build models that can generalize well to real-world scenarios, making it a corner-

stone in ML research and applications. Artificial Neural Network (ANN), K-Nearest

Neighbor (KNN), Decision Tree (DT) and Random Forest (RF) are some common su-

pervised algorithms.

Unsupervised learning. Unsupervised learning takes place when a learning sys-

tem is tasked with identifying patterns in data without the presence of labels (Fig-

ure 3.3). It involves training algorithms on unlabeled datasets, where the input data

27

3.2. What is machine learning?

Figure 3.3: Training process of unsupervised learning algorithms.

lacks predefined output labels [37]. The primary goal of unsupervised learning is

to uncover inherent patterns, structures, or relationships within the data without ex-

plicit guidance. Common techniques employed in unsupervised learning include:

(i) Clustering, where the algorithm groups similar data points together into clusters,

based on similarities or differences. Clustering techniques are used in a wide range

of applications including fraud detection, market and customer segmentation, and

recommendation engines. (ii) Dimensionality reduction which addresses the chal-

lenges posed by datasets with a high number of features or variables. It involves the

process of reducing the number of input variables in a dataset while retaining the es-

sential information. The primary goal of dimensionality reduction is to simplify the

complexity of the data, making it more manageable for analysis and interpretation. It

is particularly valuable for tasks such as visualization. (iii) Association rule mining,

a technique in unsupervised learning that aims to discover interesting relationships

or associations between variables in large datasets. It is often used in market basket

analysis or recommendations. K-mean clustering, fuzzy clustering, and hierarchical

clustering are some commonly used unsupervised algorithms.

Semi-supervised learning. Semi-supervised combines elements of both supervised

and unsupervised learning. In this approach, the model is trained on a dataset that

contains both labeled and unlabeled examples as illustrated in Figure 3.4. The la-

beled data provides explicit guidance for the model, allowing it to learn from known

outcomes, while the unlabeled data presents an opportunity for the algorithm to dis-

cover underlying patterns or structures autonomously [38]. Semi-supervised learn-

ing is particularly useful in scenarios where obtaining labeled data is expensive

or time-consuming. The model leverages the limited labeled examples to build a

foundational understanding and then generalizes from the vast pool of unlabeled

data. This methodology addresses the challenges of data scarcity and is applied in

various domains, such as speech recognition, image classification, and natural lan-

28

3.2. What is machine learning?

Figure 3.4: Training process of semi-supervised learning algorithms.

guage processing. Semi-supervised learning offers a practical compromise between

the information-rich labeled data and the vast, often readily available, unlabeled

datasets, providing a more efficient and cost-effective approach to training ML mod-

els. Graph-based methods [39], self-training [40], and generative models [41] are

some of the most commonly employed techniques.

Reinforcement learning. Reinforcement learning is a dynamic and sophisticated

paradigm in ML that revolves around the concept of an agent learning to make se-

quential decisions by interacting with an environment (Figure 3.5. In this framework,

the agent receives feedback in the form of rewards or penalties based on the actions

it takes. The primary objective of reinforcement learning is for the agent to learn

optimal strategies that maximize cumulative rewards over time. The learning pro-

cess involves exploring different actions, observing their outcomes, and adjusting

the agent’s decision-making policy to achieve better long-term outcomes. Key com-

ponents of reinforcement learning include the environment, which represents the ex-

ternal system with which the agent interacts, the state, representing the current situ-

ation or configuration, and the action and reward functions, guiding the agent’s be-

havior. Reinforcement learning has found application in various domains, including

robotics, game playing, and autonomous systems like self-driving cars. Algorithms

such as Q-learning [42] and deep reinforcement learning [43], where neural networks

are employed, have contributed to significant advancements in this field, making it a

crucial area of research for developing intelligent and adaptive systems.

29

3.2. What is machine learning?

Figure 3.5: Training process of reinforcement learning algorithm.

3.2.2 Machine learning tasks

Classification. A classification task is a fundamental problem in supervised ML

where the goal is to assign predefined categories or labels to input data based on its

features. The input data, often referred to as instances, is characterized by a set of at-

tributes or features, and the model is trained on a labeled dataset to learn the relation-

ships between these features and the corresponding target labels. The trained model

can then generalize its knowledge to make predictions on new, unseen instances.

Classification tasks can be binary, where there are two possible classes (e.g., attack or

normal), multi-class, involving more than two classes (e.g., identifying different types

of attacks), or multi-labeled, where each instance can be assigned to multiple classes

simultaneously (e.g. labeling a movie with multiple genres, such as action, comedy,

drama, etc.). Common algorithms for classification tasks include logistic regression,

decision trees, support vector machines, and neural networks. The performance of

a classification model is typically assessed using metrics such as accuracy, precision,

recall, and F1-score, which evaluate the model’s ability to correctly classify instances

across different classes. Classification tasks are pervasive in numerous real-world

applications, including image and speech recognition, sentiment analysis, medical

diagnosis, and fraud detection.

Regression. A regression task is also based on supervised ML that involves pre-

dicting a continuous numerical value or output based on input features. Unlike clas-

sification tasks that focus on assigning instances to predefined categories, regression

aims to model the relationship between input variables and a continuous target vari-

able. Regression tasks find widespread application in various domains, including

finance for predicting stock prices, healthcare for estimating patient outcomes, and

30

3.2. What is machine learning?

engineering for modeling physical phenomena. The versatility of regression makes

it a vital component in predictive modeling and data analysis.

Clustering. Clustering falls under the umbrella of unsupervised learning. The pri-

mary objective of clustering is to group similar instances based on inherent patterns

or similarities within the data, without prior knowledge of the class labels. In this

task, the algorithm autonomously identifies structures in the dataset, forming clus-

ters where data points within the same cluster share common characteristics. Clus-

tering has diverse applications, ranging from customer segmentation in marketing

to image segmentation in computer vision. It is a crucial tool for discovering hidden

structures, gaining insights into the inherent organization of data, and facilitating

subsequent analyses in different domains. The evaluation of clustering algorithms in-

volves metrics such as silhouette score [44] and the Davies-Bouldin index [45], which

assess the quality of the formed clusters.

3.2.3 Evaluation metrics

Once a ML model is trained, it must be evaluated to test its performance and effec-

tiveness. Several evaluation metrics can be used to assess the model’s performance.

These metrics provide quantitative measures that help determine how well a model

generalizes to unseen data or accomplishes specific tasks. The choice of metrics de-

pends on the nature of the ML problem. In the following, we introduce the main

metrics often used for classification and regression tasks.

Before introducing the metrics, we define the terms used to calculate them:

True Positive (TP): Instances that are correctly predicted as positive by the model.

False Negative (FN): Instances that are incorrectly predicted as negative by the

model when they are positive.

True Negative (TN): Instances that are correctly predicted as negative by the

model.

False Positive (FP): Instances that are incorrectly predicted as positive by the

model when they are negative.

• Accuracy (ACC): Measures the ratio of correctly predicted instances to the total

instances and is calculated as :

Accuracy =
TP + TN

TP + TN + FP + FN

31

3.2. What is machine learning?

Figure 3.6: ROC curves and area under the curve (retrieved from Rodríguez-
Hernández et al. 2021).

• Precision: Quantifies the accuracy of positive predictions and is defined as:

Precision =
TP

TP + FP

• Recall (Sensitivity): Measures the ability to capture all positive instances and is

given by :

Recall =
TP

TP + FN

• F1-Score: The harmonic mean of precision and recall, providing a balance be-

tween the two, calculated as :

F1 ´ Score =
2 ˆ Precision ˆ Recall

Precision + Recall

• Area under the ROC Curve (AUC-ROC): Represents the area under the Re-

ceiver Operating Characteristic curve, illustrating the trade-off between true

positive rate and false positive rate (see Figure 3.6).

In Regression tasks, Mean Squared Error (MSE) and Mean Absolute Error (MAE)

are common:

32

3.2. What is machine learning?

• Mean Squared Error (MSE): a common metric used in regression tasks to mea-

sure the average squared difference between the predicted values and the actual

values. It provides a way to quantify the overall accuracy of a regression model.

The formula for calculating MSE is as follows:

MSE =
1
n

n
ÿ

i=1

(yi ´ ŷi)
2

Where n is the number of instances in the dataset. yi represents the actual

(ground truth) value of the target variable for the ith instance. ŷi represents

the predicted value of the target variable for the ith instance.

• Mean Absolute Error (MAE): It quantifies the average absolute difference be-

tween the predicted values and the actual values. It provides a straightforward

measure of the average magnitude of errors, without emphasizing outliers as

much as MSE. MAE is calculated as follows:

MAE =
1
n

n
ÿ

i=1

|yi ´ ŷi|

3.2.4 Shallow models

Artificial Neural Network (ANN). ANNs, illustrated in Figure 3.7, are computa-

tional models inspired by the structure and function of the human brain, designed to

simulate the way biological neural networks process information. ANNs consist of

interconnected nodes, or "neurons", organized in layers: an input layer, one or more

hidden layers, and an output layer. Each connection between nodes has an associ-

ated weight, and each node applies an activation function to the weighted sum of

its inputs. Through a process known as forward propagation, input data is passed

through the network to produce an output. Training an ANN involves adjusting the

weights during a process called backpropagation, where the model learns from the

difference between predicted and actual outputs. ANNs can be used for both regres-

sion and classification tasks and have demonstrated remarkable success in various

domains, such as image and speech recognition, natural language processing, and

autonomous systems.

Convolutional Neural Network (CNN). CNNs are a type of neural network de-

signed for processing and analyzing visual data (Figure 3.8). CNNs are inspired by

33

3.2. What is machine learning?

Figure 3.7: Structure of a shallow ANN.

Figure 3.8: Structure of a CNN network.

the human visual system, utilizing convolutional layers to automatically learn hi-

erarchical representations of features from input images. The key components of a

CNN include convolutional layers, pooling layers, and fully connected layers. In

the convolutional layers, filters are applied to the input data to detect patterns and

spatial hierarchies. Pooling layers reduce the spatial dimensions, capturing the most

essential information. Fully connected layers connect all neurons from one layer to

another, enabling high-level feature extraction and classification. CNNs are particu-

larly effective in tasks related to image recognition, object detection, and classification

and have demonstrated remarkable success in various computer vision tasks, such as

autonomous vehicles, and medical image analysis.

34

3.2. What is machine learning?

Decision Tree (DT). DTs are a type of shallow ML models used for both classifica-

tion and regression tasks. These models represent a tree-like structure where each in-

ternal node represents a decision based on a specific feature, each branch represents

the outcome of that decision, and each leaf node represents the final prediction or

outcome. The decision-making process involves recursively partitioning the dataset

based on the most informative features to maximize the homogeneity of data within

each resulting subset.

In classification tasks, DTs are designed to classify instances into predefined cat-

egories, while in regression tasks, they predict a continuous numerical value. Unlike

black-box models, DTs are readily interpretable. You can follow the branches, un-

derstand the logic behind each split, and gain valuable insights into the relationships

between features and outcomes. Moreover, they require little data preprocessing and

can handle both numerical and categorical features as well as noisy data. Therefore,

their performance is less susceptible to outliers than some complex models. But like

any other model, DTs have their limitations. They are susceptible to overfitting, es-

pecially with deep trees, and may not generalize well to unseen data.

To mitigate overfitting, techniques such as pruning and setting a minimum num-

ber of samples per leaf node can be employed. Ensemble methods like Random

Forests, which use multiple DT, address some limitations of individual DT, providing

improved performance and robustness. DTs remain a fundamental building block in

ML, forming the basis for more complex models and contributing to the interpretabil-

ity of the overall model.

Random Forest (RF). RF [46] is an ensemble learning method that belongs to the

tree family. They are composed of a collection of DTs, where each tree is trained on

a different subset of the data. Each tree uses a random selection of features at each

split, which helps reduce the correlation between trees and increase diversity in the

ensemble. During classification tasks, each tree in the random forest predicts a class

label, and the final decision is made based on a majority vote of all the individual

trees. For regression tasks, the final prediction is the average of the predictions from

all trees. This ensemble approach reduces variance, prevents overfitting, and leads

to more accurate and stable predictions compared to a single decision tree. Overall,

random forests are known for their robustness and strong performance across various

domains.

35

3.3. Deep learning

Extra Tree (ET). ET [47], short for Extremely Randomized Trees, is also an ensemble

ML algorithm that extends the concept of RF. Like RF, ET builds multiple DTs during

training to improve predictive performance and robustness. The key distinction lies

in how they create data subsets and introduce randomness during the tree-building

process. In ET, the splitting of nodes is performed randomly, using not only random

subsets of features but also random threshold values for splitting nodes. This extra

layer of randomness promotes diversity among the trees and can enhance the model’s

generalization capabilities.

Let T1, T2, . . . , TN represent the individual DT, and given a new input Xnew, the

ET’s classification decision y f inal is determined by:

y f inal = mode(T1(Xnew), T2(Xnew), . . . , TN(Xnew)) (3.1)

ET is often used in classification tasks and is computationally efficient, making it

suitable for large-scale datasets. The same representation of the RF model holds for

the ET model as both are ensemble methods based on DT.

3.3 Deep learning

DL is a subset of the broader field of ML, characterized by a neural network with two

or more hidden layers (hidden layers = L and L ě 2), as shown in Figure 3.9. These

networks aim to imitate the functions of the human brain, enabling them to learn

from extensive datasets. The distinguishing aspect of DL lies in its capacity to in-

dependently learn complex patterns and representations from large datasets. Unlike

traditional ML approaches, DL models excel at extracting features through multiple

layers, allowing them to reveal hierarchies of information within raw data. This abil-

ity has proven particularly valuable in tasks such as image and speech recognition

and natural language processing [48, 49], where identifying complex patterns is cru-

cial. Moreover, unsupervised training is another key feature of DL. The latter aims

to learn from extensive sets of unlabeled data, enabling the training of models in a

fully unsupervised manner. Subsequently, if labeled data is available, often limited

in quantity, then it is employed to fine-tune the model in a supervised classification

setting.

DL techniques can be categorized into three primary architectures, generative

architectures (unsupervised), discriminative architectures (supervised), and hybrid.

The primary goal of generative architectures is to model the underlying distribution

36

3.3. Deep learning

(a) Non-deep Neural Network (b) Deep Neural Network

Figure 3.9: The difference between non-deep and deep neural networks.

of the input data. These models aim to learn the inherent structure and patterns

within the dataset without explicit labels. They generate new data samples that re-

semble the training data, capturing the intrinsic characteristics of the dataset. Com-

mon examples include Genetative Adversarial Networks (GANs) and AEs. Genera-

tive architectures find applications in image synthesis, data augmentation, and gen-

erating realistic samples in domains like computer vision and natural language pro-

cessing. Discriminative architectures focus on learning the boundary between differ-

ent classes or categories within the labeled dataset. The emphasis is on distinguish-

ing patterns associated with specific labels. These models are adept at classification

tasks, making predictions on the class or label of a given input. Common examples

include CNNs for image classification and Recurrent Neural Networks (RNNs) for

sequence labeling. Discriminative architectures are widely used in tasks such as im-

age recognition, speech recognition, and natural language processing where the goal

is to classify inputs into distinct categories. Hybrid architectures integrate both gen-

erative and discriminative components, leveraging the strengths of each. This combi-

nation aims to enhance overall model performance and versatility. By incorporating

generative and discriminative elements, hybrid architectures can handle a broader

range of tasks. For instance, they may generate new samples while also being pro-

ficient in classification tasks. Hybrid architectures are applied in scenarios requiring

a balance between data generation and classification, offering flexibility in tasks that

involve both unsupervised and supervised aspects. Figure 3.10 summarizes the DL

techniques for each category.

37

3.3. Deep learning

Figure 3.10: Taxonomy of deep learning techniques.

3.3.1 Deep learning models

Multi-Layer Perceptron (MLP). MLP [50] is a type of feedforward ANN with three

or more hidden layers and is widely employed in various domains due to its capa-

bility to model complex non-linear relationships between input features and target

classes. Given input features X = [x1, x2, . . . , xn], where n is the number of input

features, and assuming a single hidden layer h with p neurons and an output layer

with m neurons (for classification tasks with m classes) where Y represents a vector

of output labels. The MLP classifier can be expressed as follows:

Hidden layer output:

h = σ(W1X + b1) (3.2)

Output layer output:

Y = softmax(W2h + b2) (3.3)

where σ represents the chosen activation function for the hidden layer, such as

the sigmoid function, hyperbolic tangent function, or ReLU [51, 52], W1 and W2 are

weight matrices of size p ˆ n and m ˆ p respectively, for the connections between

layers, and b1 and b2 are bias vectors for the respective layers of size p and m respec-

tively.

Autoencoder (AE). An autoencoder [53] is a specific type of unsupervised neural

network that learns an "informative" representation of input data. Let x P Rd be the

38

3.3. Deep learning

input and z P Rp the latent representation of x, such that p ! d. Simple AEs [54]

encompass two blocks, an encoder, and a decoder. The former is a neural network

that learns a latent representation z of x. The latter is also a neural network that uses

the vector z generated by the encoder to reconstruct the input data with minimal

loss error, such that qθ(z|x) and pϕ(x|z) are the encoding and decoding distributions,

respectively. Variational Autoencoders (VAEs) [55] are similar to simple AEs, never-

theless, they map the input vector to a distribution of mean µ and standard deviation

σ from which the latent vector z is sampled. Figure 3.11 illustrates the general archi-

tecture of simple AEs and VAEs.

Figure 3.11: The general architecture of simple autoencoders and variational autoen-
coders.

Adversarial Autoencoders (AAEs) [56] are hybrid models that fuse AEs and

GANs [57]. It uses the adversarial loss concept introduced by GANs to improve

the regularization of an autoencoder. More specifically, an AAE employs adversar-

ial learning in order to impose the latent space to follow a certain distribution that

could be a p-dimensional normal distribution N (0, I). The overview of AAEs archi-

tecture is illustrated in Figure 3.12, where p(z) is the prior distribution we want to

impose on z, and q(z) is the distribution of the latent variable. The top half of Figure

3.12 is a standard autoencoder that plays the role of the generator and z is the gen-

erated data. The generator attempts to fool the discriminator into believing that the

latent representation is sampled from the pre-chosen distribution. On the other hand,

the discriminator Dχ(z), depicted in the bottom half of the figure, predicts whether a

given latent vector is generated by the encoder (fake) or sampled from the predefined

distribution (real). Both the autoencoder and the adversarial network are trained

jointly with Stochastic Gradient Descent (SGD) in two phases: the reconstruction phase

39

3.3. Deep learning

and the regularization phase. In the reconstruction phase, only the parameters of the

encoder and decoder are optimized in order to minimize the reconstruction loss of

the inputs, while in the regularization phase, both the discriminator and the gener-

ator (encoder) are trained at once. First, the discriminator learns how to distinguish

between real samples (drawn from the prior) and fake samples (generated by the en-

coder). Then, the discriminator is fixed and the generator is trained to acquire the

ability to produce samples following the prior.

Figure 3.12: The general architecture of adversarial autoencoders.

Generative Adversarial Network (GAN). GANs are a type of generative model,

first introduced by Ian Goodfellow and his colleagues in 2014 [57]. As depicted in

Figure 3.13, a GAN consists of two deep neural networks, a generator, and a discrim-

inator, competing against each other in a game-theoretic scenario. The generative

network (G) tries to generate realistic samples to deceive the discriminative network

(D), while D tries to accurately distinguish between the real and generated samples.

The ultimate goal is for the generative network G to generate samples that are in-

distinguishable from real data, while the discriminative network D aims to correctly

classify the samples as real or generated. Therefore, both the generator and the dis-

criminator engage in a game referred to as a "two-player minimax game", that is, G

must be minimized and D must be maximized in the following function:

min
G

max
D

V(D, G)

V(D, G) = Ex„pdata(x)[logD(x)] + Ez„pz(z)[log(1 ´ D(G(z)))]
(3.4)

G(z) is the synthetic data produced by the generator and D(x) is the probability

that the data x is real or fake predicted by the discriminator. The generator attempts

40

3.4. Federated learning

Figure 3.13: The structure of the GAN network.

to minimize the probability of misclassification by the discriminator, and the discrim-

inator seeks to maximize its ability to distinguish between real and generated sam-

ples. This adversarial training dynamic results in the refinement of both networks.

Bidirectional GAN (BiGAN). Following the introduction of GANs, numerous vari-

ations and extensions have been proposed to enhance and adapt the original frame-

work to different tasks and challenges. One notable variant is the Bidirectional

GAN (BiGAN), which introduces a two-way learning strategy by extending the GAN

with an encoder network (E) alongside the generator and discriminator. BiGAN in-

troduces an additional term to the GAN objective:

min
G,E

max
D

Ex„pdata(x)[logD(x, E(x))] + Ez„pz(z)[log(1 ´ D(G(z), z))] (3.5)

Here, E(x) aims to map real and generated samples back to a shared latent space,

promoting a bidirectional relationship between the data space and the latent space.

This addition facilitates a more comprehensive understanding of the latent space and

enables applications such as image-to-image translation and anomaly detection.

3.4 Federated learning

FL was first introduced in 2016, by McMahan et al. [58], as a decentralized ML frame-

work where multiple entities jointly train a global statistical model f (w) without the

need to send the local data to a centralized server. At each communication round of

41

3.4. Federated learning

Figure 3.14: General architecture of federated learning.

the training, a fraction of the clients are chosen to collaboratively minimize an objec-

tive function F(w):

min
w

F(w) = min
w

K
ÿ

k=1

pkFk(w) (3.6)

where Fk(w) = 1
nk

řnk
jk=1 f jk(w; xjk , yjk) is the local objective function measuring the

empirical risk over local data, K is the number of entities, nk is the number of data

points available at the entity k, and pk = nk
n is the relative impact of each entity such

that n =
ř

k nk is the total number of data samples.

More specifically, in the iterative process of FL, each round involves the strategic

selection of a subset SK from the total K client devices, each holding its own local

dataset. Within this subset, each client k downloads the current global model wt

from the central server and optimizes it locally on its unique dataset Dk, resulting in

an updated model wk
t+1. Post local training, only the model updates, reflecting the

learned knowledge, are communicated back to the central server. The central server

aggregates these updates to construct an improved global model, capturing insights

from diverse local datasets. This iterative and collaborative process is repeated across

multiple rounds, enabling the global model to progressively refine itself without ne-

cessitating the central storage or exchange of raw data. As illustrated in Figure 3.14

FL encompasses the following phases:

1. Initialization: In this phase, the server selects the set of clients to participate

in the current round. In addition, the server initializes the global model either

with pre-trained weights or random values, which is then distributed to partic-

ipating clients.

42

3.4. Federated learning

2. Local Training: Each client updates the model locally on its own dataset. This

local training involves updating the model parameters using optimization al-

gorithms like SGD. The model learns from the specific patterns and features

present in the local data.

3. Model Update: After local training, each device computes the difference be-

tween its locally trained model and the global model. This difference is often

represented as a set of gradients or parameter updates.

4. Aggregation: The model updates from all devices are sent to the central server

(aggregator). The latter aggregates these updates to update the global model.

Common aggregation methods include averaging or weighted averaging.

5. Iteration: Finally, steps 2-4 are repeated for multiple rounds or until a con-

vergence criterion is met. Each iteration allows the global model to be refined

based on the collective knowledge of all devices.

The key defining characteristic of FL is its adept handling of privacy concerns;

raw data remains securely on local devices, with only aggregated model updates

shared. This privacy-preserving and collaborative framework proves particularly

valuable in scenarios characterized by sensitive, distributed, and heterogeneous data.

3.4.1 Categorization of federated learning

FL comes in various forms, according to how the clients’ data are distributed. It can

be categorized into three main types: Horizontal Federated Learning (HFL), Vertical

Federated Learning (VFL), and Federated Transfer Learning (FTL) [59]. In this sec-

tion, we discuss each type thoroughly.

Horizontal Federated Learning (HFL). In HFL or sample-based FL (Figure 3.15(a)),

each participating device or client holds data instances that share the same feature

space but represent different entities. For instance, multiple hospitals may each pos-

sess patient data with similar attributes (e.g., age, blood pressure), but for different

individuals. Clients collaboratively train a shared model using their locally stored

data without sharing individual data points. Model updates are aggregated at a cen-

tral server, ensuring that insights from diverse instances of the same features con-

tribute to the global model’s improvement. HFL excels in scenarios with large-scale

43

3.4. Federated learning

(a) Horizontal Federated Learning

(b) Vertical Federated Learning

(c) Federated Transfer Learning

Figure 3.15: Categorization of federated learning.

datasets, such as personalized smartphone applications and image recognition sys-

tems. However, HFL may not be suitable for tasks requiring domain-specific knowl-

edge or when data across devices exhibits significant heterogeneity.

Vertical Federated Learning (VFL). VFL or feature-based FL involves clients with

complementary information (Figure 3.15(b)). In this setting, data instances share

some common features but differ in others. For example, one client may have de-

44

3.4. Federated learning

mographic data, while another has medical records, and both are necessary for a

comprehensive analysis. Instead of sharing entire data instances, clients share spe-

cific features while keeping others private. This collaborative model training allows

the global model to learn from a merged dataset without exposing complete informa-

tion. Secure techniques like homomorphic encryption may be employed to facilitate

feature sharing without revealing the raw data. VFL is particularly beneficial for

healthcare applications, where hospitals can collectively train a disease prediction

model without sharing sensitive patient data.

Federated Transfer Learning (FTL). FTL combines HFL and VFL in scenarios

where both the sample and feature spaces are different (Figure 3.15(c)). FTL focuses

on leveraging knowledge gained from one task or domain to improve learning on an-

other related task or domain. It involves transferring insights from one set of clients

to benefit the training of a model on a different set of clients. A model pre-trained

on a source task or domain is transferred to a target set of clients. The model is then

fine-tuned or adapted to the specific characteristics of the new data distribution. This

helps in situations where labeled data is scarce in the target domain but abundant

in a related source domain. FTL offers promising applications in mobile app recom-

mendation systems, where pre-trained models can be fine-tuned based on individual

user data to provide personalized recommendations. However, FTL’s effectiveness

depends heavily on the availability of a suitable pre-trained model and may not be

as effective when data deviates significantly from the pre-training data.

Each form of FL addresses specific challenges associated with different data distri-

bution patterns, ensuring that models can be trained collaboratively without compro-

mising privacy or data security. The choice between horizontal, vertical, or transfer

FL depends on the nature of the data and the objectives of the collaborative learning

task.

3.4.2 Federated learning algorithms

Since its introduction in 2016, the field of FL has witnessed a prolific surge in al-

gorithmic innovation. FL has seen a dynamic and expansive landscape of research,

resulting in the proposal of a myriad of FL algorithms. These algorithms address

diverse challenges ranging from communication efficiency and scalability to the ac-

commodation of non-IID data (cf. Section 3.4.3). The rest of this section discusses

some of the current state-of-the-art FL algorithms.

45

3.4. Federated learning

FedAvg. FedAvg the first and the standard FL algorithm proposed by the re-

searchers who introduced FL [58]. FedAvg is a simple yet effective algorithm designed

to compute a global model based on the weighted average of the parameters collected

from clients. The model is then sent back to the clients for further training. At its core,

FedAvg involves an iterative process wherein individual devices locally train on their

datasets using a shared global model. The model updates are computed over a batch

b P B as:

w Ð w ´ η∇L(w; b) (3.7)

where L represents the local loss function and η is the learning rate. The global

model is updated by averaging these local updates:

wt+1 =
K

ÿ

k=1

nk

n
wk

t+1 (3.8)

Figure 3.16 provides a visual summary of the FedAvg algorithm, illustrating the

key steps and interactions between the client and server in a FL setting.

Fedavg is easy to implement and scales well to large datasets and FL networks

with a large number of clients. However, Fedavg faces challenges when the data

across clients is non-IID [60].

FedProx. FedProx algorithm (Federated Proximal Gradient Descent) [61] is a gen-

eralized version of FedAvg that tackles the statistical heterogeneity issue within the

FL environment. FedProx modifies FedAvg by adding a regularization term δ to the

local objective functions to limit the impact of the local updates and thus restrain the

local models’ divergence, especially in non-IID scenarios. The regularization term
δ
2∥w ´ wt∥2 is added to the loss function of each client, where w are the parameters

of the global model, wt are the parameters of a local model at round t, and δ P [0, 1]

is a regularizer factor. Hence the new objective function to minimize is F1(w):

min
w

F1(w) = Fk(w) +
δ

2
∥w ´ wt∥2 (3.9)

FedProx reduces divergence and achieves faster convergence compared to FedAvg,

especially in non-IID settings. Furthermore, the server-side aggregation and regu-

larization further stabilize learning and lead to better accuracy on non-IID datasets.

46

3.4. Federated learning

Figure 3.16: The standard federated learning algorithm FedAvg.

However, choosing the optimal penalty term for proximal updates requires careful

tuning based on the dataset and model complexity.

FedMA. FedMA (Federated Matched Averaging) [62] proposes a layer-wise aggre-

gation approach that tackles the non-IID challenge through three key steps: 1) Match-

ing: during each round, similar neurons across local models are identified based on

their feature extraction signatures. This matching process accounts for data varia-

tions across devices. 2) Averaging: the matched neurons are then fused via weighted

averaging, preserving information from individual devices while reducing redun-

dant updates. 3) Adaptive growth: in addition to averaging, FedMA can discover

and add entirely new neurons to the global model based on the collective knowl-

edge of the devices. This facilitates capturing features unique to the aggregated

data, further enhancing model performance. By considering the specific features of

each device, FedMA can achieve better accuracy when data is not identically dis-

tributed. Moreover, by merging similar neurons and potentially adding new ones,

the amount of data transmitted between devices can be reduced. However, with

FedMA, the Complexity increases as matching and adaptive growth involve more

sophisticated computations compared to FedAvg, potentially posing challenges for

resource-constrained devices.

47

3.4. Federated learning

FedNova. FedNova [63] tackles the non-IID challenge through a weighted aggre-

gation approach. Each device trains a local model on its own dataset. Then, each

local model update is normalized by the number of training samples used on that

device, adjusting for data imbalances. Finally, the normalized updates are then ag-

gregated at the server using a weighted average, where devices with more training

data contribute more to the global model update. By correcting for data imbalances,

FedNova reduces bias and achieves better accuracy on non-IID datasets compared to

FedAvg. In certain scenarios, FedNova can converge to optimal performance faster

than FedAvg due to the weighted averaging mechanism. Additionally, compared to

techniques requiring additional communication for personalization or server-side ag-

gregation, FedNova maintains the same communication cost as FedAvg. Nevertheless,

normalizing updates requires additional computation compared to FedAvg, poten-

tially impacting resource-constrained devices.

FedBN. FedBN [64] addresses the issue of Batch Normalization (BN) in FL. The au-

thors proposed FedBN that keeps all BN parameters at the clients and updates them

locally without communication with the server. The empirical results presented in

the paper have shown that FedBN performs better than standard FedAvg. However,

the paper does not study the efficiency of FedBN in the case of unbalanced labels and

for more complex datasets, moreover, the paper does not cover the case where the

testing clients have no data to compute BN statistics on.

3.4.3 Federated learning challenges

FL is regarded as a seminal work and was adopted by many applications such as

Google Home and Amazon Alexa. However, FL has induced three main challenges:

1. Communication bottleneck [65, 66, 67]: Although the computation power of

mobile devices has increased significantly in the last decade, the bandwidth of

wireless communications has not improved greatly. The bottleneck has then

shifted from computation into communication in which the limited computa-

tion bandwidth has significantly slowed down the convergence time.

2. Systems heterogeneity [68]: The data-owners participating in FL process gen-

erally vary in terms of system-level characteristics (i.e. storage, computational

power, communication bandwidth, etc) which raises issues such as straggler

mitigation and fault tolerance.

48

3.5. Learning on non-IID data

3. Statistical heterogeneity [69, 70]: Intuitively, each device in the FL setting, has

local data samples that are biased by the unique device user environment and

characteristics. Therefore, in practice, local data on edge devices is not always

IID. As a result, the IID assumptions are violated in FL and common archi-

tectures tend to perform poorly in this case. In the next section 3.5 we further

discuss the non-IID data distribution.

3.5 Learning on non-IID data

In probability theory and statistics, IID refers to the assumption that each data point

in a dataset is independent of other data points and that all data points are sampled

from the same distribution. A scenario where the "independence" condition is not

met is when the generation of the next sample is dependent on the preceding sam-

ples. In financial markets, for instance, stock prices are often influenced by past prices

and market conditions. The next-day stock price is not independent of the previous

day’s price; it is influenced by factors such as historical trends, trading volumes, and

macroeconomic indicators. The violation of "identicalness" occurs when data points

are not sampled from the same distribution. For instance, the testing data comes from

an entirely different distribution from the training data.

Let us consider a learning task T with features x and labels y. Pi is the data dis-

tribution of the client i. In non-IID settings, the difference between two distributions

Pi and Pj for different clients i and j can be classified into various classes [71]:

Violation of Identicalness

• Feature distribution skew: The marginal distributions Pi(x) may vary across

clients. The input features are not evenly distributed between clients. For in-

stance, in a handwriting recognition task, users write the same words differ-

ently.

• Same label, different features (concept shift): The conditional distributions Pi(x|y)

may vary across clients. Different features across different clients might be la-

beled with the same label. This is due to cultural differences and standards of

living, etc. For example, in some regions, "Panda" is called "Panda" and in other

regions, "Red Panda" is also called "Panda".

• Same features, different labels (concept shift): The conditional distributions Pi(y|x)

may vary across clients. In this case, the same features across different clients

49

3.5. Learning on non-IID data

are labeled differently. For instance, "Leopards" can either be called Leopards

or "Pards".

• Unbalancedness: Different clients can hold vastly different amounts of data.

Violation of Independence

• Inter-partition correlation: Existing data on a client might be dependent on other

existing data on another client. For example, for a phenomenon to be fully

understood, all the information about the different devices is needed.

• Intra-partition correlation: Data samples held by a single partition are depen-

dent. For example, the consecutive frames in a video are highly correlated.

The IID assumption is commonly made in statistical modeling and ML algo-

rithms, as it simplifies the analysis and transforms complex real-world problems into

tractable and quantifiable tasks, thus allowing for certain statistical techniques to be

applied. Nevertheless, this simplification may also induce major limitations includ-

ing biased solutions, lack of generalization, and over-simplification. The assumption

of IID reflects a limited comprehension of the characteristics of real-world systems,

not fully capturing systems’ complexities. Consequently, solutions derived under

IID may be biased and work only in very specific situations, and fail to generalize

when the IID property does not hold. The latter is true in most real-world scenarios,

where datasets may exhibit complex correlations or dependencies, imbalanced dis-

tributions, and/or temporal correlations between consecutive observations or neigh-

boring data points. More specifically, ML models trained under IID can be biased

towards the training data, leading to inaccurate predictions when deployed in real-

world situations with differing data characteristics. Furthermore, they often strug-

gle to generalize to unseen data or situations outside the narrow assumptions of the

training data. This makes them less adaptable and unreliable in complex, real-world

applications.

One scenario where non-IID data is common is FL. Intuitively, each client in the

FL setting has local data samples that are biased by the unique client’s environment

and characteristics. Therefore, in practice, local data on edge devices is not always

IID. As a result, the IID assumptions are violated in FL and common architectures

tend to perform poorly in this case. The presence of non-IID data poses significant

challenges to FL. First, the global model struggles to find a common denominator

50

3.5. Learning on non-IID data

across diverse data. Each local dataset contributes unique insights into the under-

lying patterns, creating a scenario where there is no one-size-fits-all solution for the

entire dataset. This struggle results in suboptimal performance, as the model might

not capture the intricacies of any specific data distribution accurately. A second chal-

lenge is related to gradient divergence. The gradients computed during local model

updates can diverge significantly. This divergence arises from the varied nature of

data distributions, causing each device to provide gradients that point in different di-

rections. The consequence is a lack of consensus in the learned model, hindering the

convergence process and making it challenging to reach a stable global model. The

challenge of gradient divergence is exacerbated when certain devices have unique or

outlier patterns in their data, introducing conflicting gradients. Lastly, communica-

tion overhead becomes a concern as achieving convergence may require more rounds

of communication due to the varied data representations. The frequent communica-

tion between devices and the central server for model updates becomes inefficient

and resource-intensive, particularly in large-scale deployments with non-IID data.

This communication overhead, driven by the diverse nature of data distributions

among devices, amplifies latency and bandwidth consumption, posing scalability

and efficiency challenges in FL implementations.

Although McMahan et al. [72] have shown the robustness of FedAvg towards

certain non-IID distributions, several studies have demonstrated the divergence and

instability of FedAvg in such setting. For instance, the experiments presented in [73]

have shown a significant performance degradation coupled with a communication

cost of FedAvg with a highly skewed non-IID data where the accuracy of neural net-

works was reduced up to 11% for MNIST, 51% for CIFAR-10 and 55% for keyword

spotting (KWS) datasets. Similarly, Li et al. [60] have analyzed the convergence of Fe-

dAvg in a more realistic setting where the data is non-IID and the device participation

rate is low in each round. Both theoretical studies and empirical results have shown

that the convergence rate is gravely hindered in such circumstances.

To address this challenge, researchers have explored various strategies and op-

timizations aimed at mitigating the non-IIDness issue in FL under some assump-

tions. Some approaches involve the use of additional data, either held by the server

or synthetic data generated by clients. For instance, Zhao et al. [73] proposed an

enhanced version of FedAvg based on a data-sharing approach. The server holds

a global dataset G drawn from a uniform distribution and shares a random small

portion of G with all clients. Additionally, instead of starting with a global model ini-

tialized randomly, the server warms up the model centrally on the server-side proxy

51

3.6. Summary

data. However, this strategy requires some public dataset being available for a par-

ticular task which might be unrealistic in practice. A similar approach [74] suggested

the use of Federated Augmentations where each device can generate the missing

samples using a generative model. However, this requires sharing some devices’

data samples with the server, which violates the key privacy goal of FL. FedProx,

FedMa, and FedNova algorithms that we discussed in 3.4.2 have also been proposed

to enhance FL in non-IID settings.

In another line of work, [75, 76, 77, 78] allow a partial client participation based

on a conditional client selection. In particular, [75] studies the convergence of FedAvg

under biased client selection and proposes non-uniform clients’ sampling based on

their losses. The proposed strategy shows faster convergence and higher testing ac-

curacy. However, such approaches are often not governed by the server but by the

clients’ availability.

3.6 Summary

In this chapter, we covered the field of ML. We discussed the different paradigms of

ML, including supervised, semi-supervised, unsupervised, and reinforcement learn-

ing, as well as the three main tasks in ML, namely, classification, regression, and

clustering. Then, we presented an overview of several shallow ML models. Ad-

ditionally, we delved into the foundational concepts of DL, presented various DL

models, and highlighted its superiority in learning features compared to shallow ML

models. We further discussed the decentralized ML framework, FL, its categoriza-

tions, algorithms, and challenges. Finally, we shed light on one of the key challenges

in ML, both in general and within the context of FL, and we reviewed previous works

that tackled this issue. This chapter provided insights about the potential of ML, DL,

and FL for resolving complex network challenges, specifically for intrusion detection,

which is the aim of this thesis.

The subsequent chapter will discuss the deployment of ML/DL and FL for intru-

sion detection and will review existing research within this context.

52

4 ML-enabled Intrusion

Detection

4.1 Introduction

The revolution of Machine Learning (ML) represents a transformative era in the realm

of technology and data analytics. ML has revolutionized traditional approaches to

problem-solving by enabling systems to learn from data, identify patterns, and make

predictions or decisions without explicit programming. This paradigm shift has had

a profound impact across diverse industries, unlocking new possibilities and efficien-

cies. In fields such as healthcare, finance, and autonomous systems, ML algorithms

have demonstrated their effectiveness in extracting meaningful insights, optimizing

processes, and enhancing decision-making. The revolution is characterized by the

unprecedented scalability of ML models, allowing them to handle massive datasets

and complex tasks with remarkable accuracy. The continuous evolution of ML tech-

niques, fueled by advancements in DL and neural networks, has urged this revolu-

tion, paving the way for innovative applications and solutions.

In recent years, the pervasive integration of ML has extended its reach into the do-

main of cybersecurity. The significance of ML solutions in detecting and mitigating

malicious activities within the intricate landscape of cybersecurity has become in-

creasingly evident. Conventional approaches, primarily relying on static signature-

based methods, have proven inadequate in addressing the dynamic and sophisti-

cated nature of contemporary cyber threats. As a result, ML has emerged as a pivotal

component in fortifying cybersecurity defenses. Its adaptive and data-driven nature

53

4.2. ML-based anomaly detection

empowers security systems to identify patterns, anomalies, and potential threats in

real time, enabling a proactive and responsive approach to cyber threats.

4.2 ML-based anomaly detection

ML is increasingly being used for anomaly-based intrusion detection. The explo-

ration of various algorithms and their combinations is an active area of research,

aiming to address the limitations inherent in signature-based IDS.

ML models are built to derive valuable insights from data. These models are de-

signed to perform specific tasks depending on the use case at hand. In the context of

anomaly-based IDS, classification, regression, and reconstruction are the most pop-

ular and used tasks. The classification task involves the systematic categorization

of input data into predefined classes or categories. The primary goal is to assign

each input to a specified class, such as "normal or "attack". Regression, or predictive

analysis, aims to determine continuous values to estimate an output based on input

variables. Finally, reconstruction which is often associated with certain neural net-

works, involves compressing input data and then reconstructing it, compelling the

network to learn efficient feature representations during the encoding and decoding

processes.

The ML models used for anomaly-based intrusion detection can be trained in

three different manners; supervised, semi-supervised, or unsupervised. Supervised

learning requires labeled datasets to train a model, where both inputs and corre-

sponding correct outputs are provided. The model eventually learns to map inputs

to outputs, making predictions or classifications based on the learned patterns. ANN,

DT, KNN, and bayesian networks are some of the commonly used supervised meth-

ods. Supervised learning techniques have well-defined objectives making it easier

to evaluate and measure performance. However, they assume the availability of la-

beled data, with the attacks’ type known and data correctly labeled. Whereas, in

real-world applications, zero-day attacks never seen in the training dataset, may oc-

cur. Moreover, only a limited amount of labeled data is available in reality, with

possibly inaccurate annotation. To address these challenges, semi-supervised and

unsupervised learning methods are utilized. Semi-supervised learning techniques

involve using a combination of labeled and unlabeled data to train the model. This

allows for leveraging the information from the labeled data while also taking advan-

tage of the larger amount of unlabeled data. Unsupervised learning, on the other

hand, does not require labeled data and can uncover hidden patterns or structures

54

4.3. DL-based anomaly detection

within the data. By allowing the model to learn without predefined labels, unsu-

pervised learning can be effective in detecting anomalies and identifying new types

of attacks that have not been seen before. However, it is important to consider that

while unsupervised learning can be effective in certain scenarios, it may not provide

detailed information about the type of attack. In contrast, semi-supervised learning,

as a combination of supervised and unsupervised learning, addresses some of the

limitations of both techniques. It leverages a small amount of labeled data to pro-

vide detailed information about the type of attack, while also benefiting from the

larger amount of unlabeled data to improve overall detection capabilities. Overall,

the choice between supervised, semi-supervised, or unsupervised learning depends

on the availability of labeled data, the nature of the attacks being studied, and the

specific goals and constraints of the analysis.

4.3 DL-based anomaly detection

Numerous ML methods have been proposed for anomaly-based intrusion detection.

However, as the volume and complexity of Internet traffic continue to grow, accom-

panied by the generation of multi-dimensional and large-scale data, and, increasingly

sophisticated attack scenarios, traditional shallow ML approaches are deemed insuf-

ficient in addressing the evolving security challenges. In response, researchers have

turned their attention to DL to explore its potential for intrusion detection.

DL techniques have demonstrated effectiveness in dimensionality reduction and

classification tasks, making them ideal for handling the intricacies of network traffic

data. Deep networks in DL-based intrusion detection systems learn from historical

traffic data, comprising normal and anomalous traffic, without the need for human

intervention. Moreover, DL models can automatically extract relevant features from

the data and identify complex correlations, enabling them to effectively detect zero-

day attacks and complex attack patterns.

DL-based intrusion detection can be achieved using three main architectures, dis-

criminative, generative, and hybrid. Discriminative models leverage labeled data

and directly learn to distinguish between normal and anomalous data. They essen-

tially act as anomaly classifiers, assigning a probability score to each data point based

on its likelihood of being anomalous. CNN and Long Short-Term Memory (LSTM)

are common examples of discriminative architectures. The training process of gen-

erative models, on the other hand, involves exposing the model to a diverse set of

normal network activities, allowing it to learn the inherent patterns and features and

55

4.3. DL-based anomaly detection

consequently the underlying distribution of "normal" data. Once trained, the model

can detect deviations or anomalies by identifying patterns in network data that dif-

fer from what it has learned during training, i.e., anything the model finds difficult

to reconstruct or generate, is flagged as an anomaly. AEs are a famous example of

generative models used for anomaly-based IDS. These models compress the input

data into a latent representation and then attempt to reconstruct the original data

point from that representation. Anomalies show significant reconstruction errors.

Last, hybrid architecture combines the strengths of generative and discriminative

approaches. Hybrid models leverage the generative model’s ability to capture the

normal data distribution with the discriminative model’s classification power. A hy-

brid model may use a GAN to generate synthetic normal data and a CNN to classify

incoming data, offering a robust approach that benefits from both generative and

discriminative capabilities.

The use of DL in intrusion detection systems has gained significant attention due

to its ability to handle the growing complexity and volume of Internet traffic. Ad-

ditionally, DL models in intrusion detection can perform both feature extraction and

classification tasks simultaneously, making them more efficient and accurate com-

pared to shallow ML algorithms. Therefore, researchers have conducted systematic

studies to evaluate the use of DL in intrusion detection systems [79].

Generative models, particularly, have been widely used in the field of intrusion

detection. For instance, Zavrak et al. [15] proposed a method based on a VAE to

detect anomalies in network traffic flows. The reconstruction error was used to clas-

sify network flows as anomalous or normal. By conducting experimentation on the

CIC-IDS2017 dataset, the results are shown to be similar to AE and OCSVM models

in terms of ROC metric. Another work introduced by Azmin et al. [80] combines

a Variational Laplace AutoEncoder (VLAE) and a Deep Neural Network (DNN) for

intrusion detection. They improved the existing VLAE by incorporating class labels

as input to the autoencoder. The new model named Conditional Variational Laplace

AutoEncoder (CVLAE) is then used to learn the latent variable while the DNN is

employed as a classifier. For instance, Li et al. [81] adopted Wasserstein GAN Di-

vergence (WGAN-DIV) for data generation for each class in the dataset. Then, XG-

Boost was trained on the enhanced data and was used for detection. The use of VAE

and GAN models for anomaly-based intrusion detection has been thoroughly inves-

tigated in the literature and has shown promising results. However, both approaches

have their advantages and limitations. Many other works have proposed the use of

VAE and GAN models for IDS [82, 83, 84, 85, 86]. Normalizing Flow (NF), which

56

4.4. Federated learning for intrusion detection

are a class of generative models [87, 88, 89] have also been explored in the field of

anomaly-based intrusion detection. The authors of this work [90] proposed a semi-

supervised learning scheme that leverages normal data with available real anomaly

records along with pseudo-anomalies sampled using NF to train a classifier.

4.4 Federated learning for intrusion detection

Traditional centralized intrusion detection methods have long been the cornerstone

of network security [91], offering a consolidated approach for monitoring and analyz-

ing network traffic at a central server. This centralized approach involves deploying

sensors strategically across the network, to collect data on traffic patterns and behav-

iors. The collected data is then transmitted to a central server where it undergoes

analysis using predefined signatures or anomaly detection algorithms. Although

centralized intrusion detection methods have their advantages in terms of stream-

lined management, a unified view of security events, and high detection accuracy,

they also suffer from limitations. First, the centralized approach can create a single

point of failure, as an attack on the central server can comprise the entire IDS. Sec-

ond, with the overwhelming amount of data generated and transmitted to the server,

latency can be a major concern, leading to delays in detecting and responding to in-

trusions. Moreover, the network traffic generated is private in nature, which raises

concerns about the privacy implications of transmitting all network traffic to a cen-

tralized server. In response to these challenges associated with centralized systems,

on-device learning has emerged as an alternative. On-device intrusion detection [92,

93, 94] involves deploying intrusion detection capabilities directly on individual net-

work devices or endpoints. This decentralization of intrusion detection shifts the

analysis and decision-making process closer to the source of the network traffic, re-

sulting in faster response times and reducing the need for transmitting sensitive net-

work traffic to a central server. Additionally, on-device learning allows for more

granular and context-aware analysis, as it can leverage each device’s characteristics.

However, on-device learning introduces its own set of challenges. Each device must

have sufficient computational resources to perform the necessary analysis and detec-

tion tasks. Moreover, these systems need frequent updates to stay effective against

the evolving threat landscape. Further, on-device learning exhibits a fundamental

constraint by confining its knowledge acquisition to individual user experiences (iso-

lated learning). Consequently, no inter-device knowledge transfer occurs, impeding

the detection of recurrent threats across separate devices despite identical behavioral

57

4.4. Federated learning for intrusion detection

patterns. The inherent isolation of on-device learning models restricts their capacity

to exploit the collective power of shared threat intelligence.

Despite their advantages, both centralized and on-device learning paradigms

possess fundamental limitations, necessitating the consideration of other learning

architectures. A viable solution should strike a balance between privacy, commu-

nication cost, latency, and accuracy. In simpler terms, it must ensure data privacy

while achieving high model accuracy, with minimal communication cost and accept-

able latency. FL has become an increasingly popular approach for intrusion detection

[95]. FL addresses the privacy concerns associated with centralized methods while

fostering collaboration and knowledge-sharing among devices, offering a more com-

prehensive and privacy-centric solution for intrusion detection.

4.4.1 Federated learning for network intrusion detection

Among the methods of developing FL-based IDS discussed in the literature, several

works have leveraged FL to perform intrusion detection in IoT networks. For in-

stance, The authors of this work [96] have introduced DÏoT, a self-learning distributed

system for detecting anomalous behaviors in IoT networks. The proposed solution

utilizes FL to efficiently aggregate behavior profiles. The authors evaluated their ap-

proach on 30 IoT devices contaminated with real IoT malware and demonstrated

that their system can achieve up to 95.6% true positive rate with zero false alarms.

Another work by Rahman et al. [93] proposed an FL-based system for intrusion de-

tection in IoT devices to enable knowledge sharing between peers without losing to

privacy issues. The evaluation was conducted on the NSL-KDD [97] dataset consid-

ering several data distribution scenarios and a comparison between FL, on-device,

and centralized approaches was made. Despite the important difference between FL

and centralized learning, yet, FL outperforms on-device learning and is the closest

to centralized learning. Similarly in this paper [98], the authors proposed DC-Adam,

an asynchronous FL anomaly detection approach for IoT systems. For anomaly de-

tection, a denoising autoencoder model was employed, where the reconstruction

error was considered as an anomaly score. The proposed approach was evaluated

on MNIST [99], CIC-IDS2017 [100], and IoT-23 [101], and was compared with three

other approaches, namely Asynchronous Adam (Asyn-Adam), Asynchronous SGD

(Asyn-SGD), and Synchronous Adam (Syn-Adam). Asyn-DC-Adam was proven to

converge steadily compared to Asyn-Adam and Asyn-SGD and nearly matches Syn-

58

4.4. Federated learning for intrusion detection

Adam. Moreover, Asyn-DC-Adam outperforms all the before-mentioned approaches

in terms of accuracy, precision, recall, and F1-score.

Despite the benefits of FL approaches especially in IDS, FL models are susceptible

to many adversarial attacks leading to their failure. This was shown in [102], where

the authors investigated FL for malware detection in IoT devices for both cases su-

pervised (based on a Multi-Layer Perceptron (MLP) model) and unsupervised (based

on an Auto-Encoder model) learning. The authors used N-BaIoT [103] for evaluation,

a dataset that models the traffic of real IoT devices impacted by malware, and com-

pared the proposed framework with centralized and distributed architectures. High

accuracy was obtained (up to 99%) for both supervised and unsupervised learning

and under several scenarios, this is mainly because N-BaIoT is considered an easy

and less complex dataset. However, this accuracy is shown to drop drastically under

adversarial attacks, and though the use of robust aggregation functions, such as me-

dian, shows an improvement compared to FedAvg yet insufficient, demonstrating the

need for more robust countermeasures.

Several other works have been proposed for FL-based NIDS. In fact, the major

challenges are related to data issues, such as data scarcity and data dimensionality

issues. The work presented by Zhao et al. [104] tackled the first problem of data

scarcity by leveraging the multi-task learning paradigm and the heterogeneity of

real-world intrusion datasets, and they proposed MT-DNN-FL, a multi-task deep

neural network in FL. On the one hand, the proposed method performs multiple

tasks simultaneously, namely, network anomaly detection, traffic recognition, and

traffic classification. On the other hand, the adoption of FL architecture guarantees

user data privacy. The experiments performed on CIC-IDS2017 [100], ISCXVPN2016

[105], and ISCXTor2016 [106] demonstrated the effectiveness of MT-DNN-FL com-

pared to multiple single-task deep neural networks (DNN, k-NN, RF, etc.). Ayed et

al. [107] investigated the effectiveness of FL for anomaly detection in NIDS. For this

purpose, the CIC-IDS2017 dataset was used, where the proposed experimentation

scenario respects the network topology and node characteristics, more specifically,

every IP address presented in the dataset was considered as a node in the FL ar-

chitecture. The authors conducted several experimentation scenarios depending on

the client selection strategy and train/test data percentage. The results showed that

this method can achieve up to 93% accuracy in some scenarios while preserving data

privacy. In this work [108], the data dimensionality challenge was addressed. The au-

thors employed FL to build an anomaly-based network intrusion detection through

an on-device sequential learning neural network ONLAD [109]. To tackle the data

59

4.5. Limitations and research gaps

dimensionality issue, a greedy feature selection algorithm was used to find the set

of features that produces the best accuracy according to each device’s target attack

types. Then, only the devices with the same feature space are gathered and an FL

model is created for each group, resulting in multiple global models. Experiments

carried out on the NSL-KDD [97] dataset indicate that the best accuracy obtained is

70.4% and an overall improvement is 25.7% Likewise, Tabassum et al. [86] proposed

a privacy-preserving FL-based framework, named FEDGAN-IDS. The latter uses a

GAN based model in a distributed setup for two reasons, the first for data augmen-

tation and the second to perform binary and multi-class classification. The proposed

framework was evaluated on NSL-KDD [97], KDD-CUPP99 [110], and UNSW-NB15

[111], and was compared with FED-IDS, an IDS based on FL and simple neural net-

works. FEDGAN-IDS is shown to outperform FED-IDS on all datasets in terms of

accuracy and convergence rate.

4.5 Limitations and research gaps

While existing ML/DL and FL–based intrusion detection models show promising

results in anomaly detection, they are not without their limitations and challenges.

These shortcomings need careful consideration when developing and evaluating

ML/DL and FL-based approaches for IDS. The key research gaps can be outlined

as follows:

• Most of the existing solutions for IDS are designed with the assumption that

both labeled normal and attack samples are available, a condition that may not

align with real-world scenarios. In reality, labeled attack samples are limited

if not completely unavailable. The process of labeling network traffic requires

human intervention and usually is very expensive, time-consuming, and some-

times not feasible due to the constantly evolving nature of cyber threats. In ad-

dition, it requires extensive domain expertise to accurately label network traffic

as normal or malicious, which further complicates the process. Consequently,

the deployment of these supervised solutions for real-world applications may

be challenging or impractical due to the lack of labeled data for training.

• Many of the current IDS solutions undergo evaluation using outdated datasets

like KDD99 and NSL-KDD. These datasets have been widely used in research

and benchmarking, however, it has also been shown that they suffer from sev-

eral limitations and do not accurately represent modern network traffic and at-

60

4.6. Summary

tack patterns. Thus any evaluation or comparison of IDS solutions based solely

on these datasets may not provide an accurate reflection of their performance

leaving certain aspects unexplored and potentially limiting their applicability

to diverse real-world situations.

• Numerous researchers place significant emphasis on developing sophisticated

models for IDS while often overlooking the importance of the dataset used for

training and evaluation. The dataset serves as the foundation upon which the

model is trained, and its quality, diversity, and representativeness significantly

impact the model’s ability to learn meaningful patterns, make accurate pre-

dictions, and detect novel threats. Neglecting the dataset can lead to limited

generalizability and biased models that perform well in specific instances but

struggle with real-world scenarios.

• Often, researchers tend to design intricate models for FL-based IDS, neglecting

the challenges associated with the size and complexity of models within this

context. The oversight of addressing the implications of deploying large and

complex models in a federated setting can have notable consequences, impact-

ing the efficiency, communication costs, and overall performance of FL-based

IDS solutions. It becomes crucial to consider the computational and commu-

nication overheads associated with deploying sophisticated models across dis-

tributed nodes in the FL framework, as these factors play a pivotal role in de-

termining the feasibility and effectiveness of the IDS implementation.

4.6 Summary

In this chapter, we discussed the use of ML/DL approaches and FL framework for

intrusion detection and we have reviewed some of the related solutions in the liter-

ature. We have shown that these approaches have demonstrated great potential in

enhancing the performance and effectiveness of IDS as well as the privacy of the net-

work data. Leveraging ML/DL techniques allows IDS to autonomously learn and

adapt to evolving threat landscapes, enabling the detection of both known and novel

cyber threats. Additionally, the FL framework offers a privacy-preserving and de-

centralized approach, addressing concerns related to sharing sensitive data. The ex-

ploration of these advanced methodologies aims to contribute to the development

of more robust and adaptive intrusion detection systems capable of mitigating the

challenges posed by sophisticated and rapidly evolving cyber threats. However, the

61

4.6. Summary

existing solutions for IDS based on ML/DL and FL frameworks still face some chal-

lenges and limitations. These include issues such as generalizability, data quality and

availability. The next chapter will address these challenges and propose solutions to

further enhance the capabilities of ML/DL and FL-based IDS.

62

Part II

Contributions

In the second part of this thesis, we delve into the primary contributions made to the

field of intrusion detection and FL. This part is organized into three chapters, each

elucidating a distinctive facet of the research. The initial chapter introduces the first

significant contribution, an autoencoder-based method for distributed NIDS by

leveraging FL and anomaly detection. This novel approach harnesses the power of

autoencoders as well as the collaborative strength of FL to enhance the efficacy and

privacy of intrusion detection systems. The subsequent chapter delves into the

second contribution, which is an examination of the effects of different flow timeout

values on the performance of ML models in the context of NIDS. The last chapter

presents the third contribution, which is a novel FL approach that handles batch

statistics in FL when using DL models with normalization layers.

63

5 Federated Learning for

Anomaly-based NIDS

5.1 Introduction

DL has demonstrated its efficacy across various domains, showcasing its transfor-

mative capabilities in numerous applications. Its power extends to diverse fields,

where DL models, such as neural networks, have proven instrumental in solving

complex problems and tasks. From computer vision and natural language processing

to healthcare and finance, DL has exhibited a remarkable ability to learn intricate pat-

terns from data, enabling it to make accurate predictions, classify information, and

generate valuable insights. The success of DL lies in its capacity to autonomously

extract meaningful representations from raw data, adapt to different contexts, and

continually improve performance through iterative learning processes.

In the specific context of intrusion detection, DL is becoming a cornerstone, rev-

olutionizing the way cybersecurity professionals identify and combat threats within

computer networks. By utilizing DL algorithms, intrusion detection systems can ef-

fectively analyze network traffic patterns and identify anomalous behavior that may

indicate a potential cyber attack. Unlike traditional rule-based systems that strug-

gle with novel attack tactics, DL models can continuously learn and evolve, keeping

pace with the ever-changing threat landscape. This adaptability allows them to detect

zero-day attacks and emerging threats before they cause significant damage. More-

over, DL models can go beyond simply reacting to attacks; they can predict potential

64

5.2. Problem statement

threats before they occur. This proactive approach enables pre-emptive measures to

be taken, minimizing the impact of attacks and safeguarding crucial systems.

5.2 Problem statement

An efficient IDS should, on the one hand, be able to detect intrusions effectively while

incurring low false positive rates. On the other hand, it should provide privacy guar-

antees to protect sensitive client data. To meet the first requirement, one potential

approach could be the use of DL models considering their potential to learn com-

plex patterns from raw data. These models require large amounts of data for train-

ing. However, a common scenario in many real-world applications is that a limited

amount of labeled attack data is available or expensive to obtain, posing challenges

to developing robust IDS. Autoencoders (AEs), a specific class of DL models, have

shown great promise in network intrusion detection due to their ability to effectively

capture and encode complex patterns in traffic data [112, 113]. AEs have the ability

to learn only on normal data, building a baseline of normal traffic and recognizing

anomalous behavior based on the underlying distribution of normal data. Any de-

viation from the pre-established baseline is identified as a potential anomaly. This

comes with the potential to detect new and sophisticated attacks that might not be

identified by traditional signature-based methods. As for the second requirement,

FL presents a compelling solution by allowing the training of a global intrusion de-

tection model across decentralized edge devices without centrally storing sensitive

data. This decentralized approach addresses privacy concerns, as the model learns

from local data without the need for raw data transmission, thereby preserving the

confidentiality of client information. FL coupled with AE models, thus holds promise

in delivering an effective and privacy-preserving solution for intrusion detection in

distributed environments

Most of the proposed solutions, especially those based on AEs, require pooling all

network traffic data on a central server for training. While undeniably efficient and

accurate, these centralized approaches raise significant privacy concerns and may not

be feasible in scenarios where sensitive data needs to remain decentralized [15, 16].

In such scenarios, decentralized approaches and privacy-preserving mechanisms are

imperative. Decentralization involves training models locally on individual devices,

minimizing the need for centralized data storage. Privacy-preserving techniques,

such as FL, offer solutions to ensure data confidentiality during the training pro-

cess. FL offers a groundbreaking solution, enabling secure and collaborative model

65

5.3. Methodology

training without compromising data privacy. In this chapter, we tackle this issue by

leveraging FL and AEs to build efficient and privacy-preserving NIDS.

5.3 Methodology

In this section, we introduce a structured approach to securely train an intrusion

detection model in distributed settings. This approach consists of two main parts,

namely AE and FL. In the following, we first describe the practice that trains an

AE-based model across multiple decentralized clients. Then, we present the pro-

posed method Fed-ANIDS, that combines autoencoders with FL to enable secure and

privacy-preserving training of an intrusion detection model in distributed settings.

5.3.1 Distributed learning using AE-based models

We assume that there are K clients in the network installed in different locations and

connected to a central server. Each of which possesses collected benign data Dk that

is kept private. We seek to build a ML-based NIDS leveraging FL, i.e. privately learn

a global model from the network data of all clients for network intrusion detection.

The FL training requires protecting the privacy of the clients, while the NIDS should

accurately detect attacks with a low rate of false alarms.

We design a distributed NIDS using autoencoders (Simple, AE, Variational Au-

toencoder (VAE), Adversarial Autoencoder (AAE)) and FL framework. Each client

connected to the central server runs a copy of the global encoder and the global de-

coder (and the global discriminator for AAE) with his local benign data. Once the

local AE is trained, the updated weights are shared with the central server for aggre-

gation. At the detection phase, the global AE aims to report any possible network

intrusion. Figure 5.1 depicts the architecture of distributed learning using AE-based

models for NIDS using FL.

At each training round t P E, a subset St of m = max(C ˆ K, 1) clients are selected

at random to take part in the current round such that C is the fraction of clients to

be chosen to participate. Each client k P St receives the global model and optimizes

it with its local data Di for I local iterations. The optimization is done using the

mini-batch gradient descent technique. Once the training is completed, the client k

sends the local weights θi
t (encoder), ϕi

t (decoder), and χi
t (discriminator) back to the

server for aggregation. These steps are repeated until we reach convergence, i.e. the

performance of the model gets closer and closer to a specific value. Note that the

server acts solely as a coordinator, ensuring that the aggregated model represents

66

5.3. Methodology

Figure 5.1: Distributed learning of different variations of autoencoders (simple AE,
VAE, and AAE) for NIDS using FL.

the collective knowledge of all participating clients without having any access to the

data during training. This ensures privacy protection and prevents the server from

gathering any sensitive client data during the training process. Table 5.1 introduces

the main notations used in the remainder of this chapter.

5.3.2 Proposed method Fed-ANIDS

We propose Fed-ANIDS, an anomaly-based network intrusion detection method

based on FL and AE. Figure 5.2 presents the overall architecture of Fed-ANIDS. It

consists of four main components: 1) Global model initialization, 2) Local training, 3)

Model aggregation, and 4) Model dissemination. Each phase is thoroughly explained in

the remainder of this section.

5.3.2.1 Global model initialization

We assume that we are in a distributed learning network. The central server starts

the learning process by initializing the weights of the global model as well as the

hyperparameters needed for the training such as learning rates, momentum, δ value

(for FedProx), etc. The global model can be an AE, a VAE, or an AAE. In the case of the

AAE model, the server is also in charge of defining a prior distribution p(z). Once

67

5.3. Methodology

Table 5.1: Notations used to describe various steps in the remaining of the chapter.

Notation Description

K All clients/entities in the network
E Total number of communication rounds
I Total number of local iterations
N Size of mini-batch
IS Intrusion score
thr Anomaly detection threshold
δ The penalty term forFedProx algorithm
Dk Local dataset of client k
α Learning rate of Encoder
β Learning rate of Decoder
γ Learning rate of Discriminator
p(z) The prior distribution for AAE
θt Encoder parameter at round t
ϕt Decoder parameter at round t
χt Discriminator parameter at round t
B The local mini-batch size

the initialization is done, the server shares the model and the hyperparameters with

the clients selected in the first round.

5.3.2.2 Local model training

We consider K clients that collaboratively train a global model for a network intrusion

detection task. The clients perform two main tasks, data preprocessing, and local

training:

Figure 5.2: Fed-ANIDS architecture which consists of 4 main components including,
global model initialization, local training, model aggregation, and model dissemina-
tion.

68

5.3. Methodology

Feature extraction & data preprocessing. Before being fed to the AE-based model,

each client ensures that his data is prepared and of quality to be consumed. For each

dataset, the publicly available PCAP1 files were utilized and preprocessed according

to the works of [114, 115]. First, the pcapfix2 tool was run on all PCAPs to repair any

possible corrupted or damaged ones. The output PCAP files are then run through

reordercap3, a program that sorts packets by timestamp. This step is most helpful in

cases where a file has been created by combining frames from more than one source

without taking time order into consideration. The resulting files are fixed and or-

dered PCAPs ready to use. Existing NIDS datasets suffer from various pitfalls related

to flow construction, labeling, and attack simulation. Therefore, [114] and [115] have

proposed an improved version of the CICFlowMeter tool to generate cleaner NIDS

datasets. We use the proposed tool to extract 87 statistical flow features from PCAP

files and save them into CSV files. For CIC-IDS2017 and CSE-CIC-IDS2018 flow la-

beling, we follow the guidelines4 of [115]. The extracted features are composed of

both numerical and categorical features, hence we convert character data into nu-

meric values (features encoding). Finally, we perform min-max scaling to normalize

the data. Figure 5.3 illustrates the data preprocessing pipeline.

Figure 5.3: Data preprocessing pipeline.

Local training. If selected, a client downloads the current global state of the AE

from the server. The AE is then fed with only normal samples of the client’s local

data and trained to learn the encoding and the reconstruction of the normal behavior.

The mean squared error is minimized between the input x and its reconstruction x1.

To train the discriminator of the AAE, an isotropic gaussian distribution N (µ, I) is

used as the imposed prior. Fed-ANIDS uses the FedProx algorithm to update the local

1Packet Capture, a file format for storing raw network packets.
2https://github.com/Rup0rt/pcapfix
3https://www.wireshark.org/docs/man-pages/reordercap.html
4https://github.com/GintsEngelen/CNS2022_Code

69

5.3. Methodology

models, hence a regularization term δ
2 ∥w ´ wt∥2 is added to the loss function of each

client, where w are the parameters of the global model, wt are the parameters of a

local model at round t, and δ P [0, 1] is a regularizer factor. The aforementioned steps

are shown in Algorithm 1 for the client’s side.

Algorithm 1 CLIENTUPDATE: optimize clients models weights

Input: The parameters θ, ϕ, and χ for the encoder, decoder, and discriminator resp;
the prior distribution; the local normal data X = [x0, ..., xN´1] „ p(x); the number
of local epochs I; the set of mini-batches B each of size N; parameters α, β, γ for
the learning rates for the encoder, decoder, and discriminator resp; the regularizer
factor δ FedProx.
Output: Normal or Attack.
for i = 1 to I do

for batch b P B do
Ź Reconstruction phase
Ź Minimize the reconstruction loss
Lrec =

1
N

řN´1
i=0 (xi ´ x1

i)
2 + δ

2 ∥ϕ ´ ϕt∥2

ϕ Ð ϕ ´ α∇ϕLrec
θ Ð θ ´ β∇θLrec
if AAE then:

Ź Generate fake samples z f ake „ qϕ(z|x) by the encoder
Ź Draw samples from the prior zreal „ p(z)
Ź Regularization phase
Ź Train the discriminator
Ldis = ´ 1

N [
řN´1

i=0 logDχ(zreali) +
řN´1

i=0 log(1 ´ D≻(z f akei))] +
δ
2 ∥χ ´ χt∥2

χ Ð χ ´ γ∇χLdis
Ź Train the generator (encoder) to match the prior
Lprior =

1
N

řN´1
i=0 log(1 ´ Dχ(z f akei)) +

δ
2 ∥χ ´ χt∥2

ϕ Ð ϕ ´ α∇ϕLprior
end if

end for
end for
Ź Send θ, ϕ, and χ to the server

5.3.2.3 Model aggregation

Model aggregation is a crucial step in FL. It allows the local models trained on sep-

arate devices to be combined into a single global model while maintaining data pri-

vacy. At the end of each communication round, each participating client sends his

local update of the model to the server. Upon receiving all the updates, the server

computes the weighted average as the new global weight parameters. The global

model is then updated with the weighted average, and the process is repeated until

70

5.3. Methodology

convergence. Algorithm 2 depicts the steps of model aggregation executed by the

server.

5.3.2.4 Threshold selection

Once the training procedure is completed, a score threshold must be computed for

the intrusion detection phase. For this purpose, we set a separate validation set upon

which we determine a proper threshold for the global model. We should mention that

the model performance is heavily reliant on the threshold value. On the one hand, a

higher value would result in fewer false alarms but could also result in marking more

attacks as normal instances. On the other hand, a lower value would produce more

false alarms and mark more normal instances as attacks. We propose to compute

the threshold thr following Equation 5.1, i.e., the threshold is the sum and standard

deviation of MSE over the validation set [116].

thr = MSE(Dval , ϕt)) + s(MSE(Dval , ϕt)) (5.1)

The determined threshold is then used at the inference stage. We compare the In-

trusion Score (IS), which is the reconstruction loss, with the pre-computed threshold.

If the intrusion score is greater than the threshold, then the instance is considered an

intrusion; otherwise, the instance is benign.

Algorithm 2 SERVERAGG: build global model by aggregating clients models

Input: θ, ϕ, andχ the parameters for the encoder, the decoder, and the discrimina-
tor resp; the K clients; the number of global rounds E;
Output: θ, ϕ, and χ
Initialize θ0, ϕ0, and χ0
for each round t = 0, . . . , E ´ 1 do

m Ð max(C ˆ K, 1)
St Ð select a random set of m clients
Ź send θt, ϕt and χt to each client k P St
for each client k P St do

θk
t+1, ϕk

t+1, χk
t+1 Ð clientUpdate(wt)

end for
θt+1 = 1

K
ř

kPSt
θk

t+1
ϕt+1 = 1

K
ř

kPSt
ϕk

t+1
if AAE then

χt+1 = 1
K

ř

kPSt
χk

t+1
end if
Disseminate the updated parameters for the next round.

end for

71

5.4. Experiments and results

5.3.2.5 Model parameters dissemination

Once the training is completed and the convergence is reached, the latest update of

the global model is shared with all clients available in the network. When a new

instance Xnew comes into the network, an intrusion score is computed (reconstruc-

tion loss). The instance Xnew is marked as an intrusion if the IS is greater than the

threshold, else it is marked as a normal instance.

Xnew =

$

’

&

’

%

Anomaly, if IS ą thr

Normal, otherwise
(5.2)

5.4 Experiments and results

Figure 5.4: The distribution of benign and attack samples of USTC-TFC2016, CIC-
IDS2017, and CSE-CIC-IDS2018 datasets.

In this section, we evaluate the performance of the proposed method Fed-ANIDS

with various well-known datasets (USTC-TFC2016, CIC-IDS2017, and CSE-CIC-

IDS2018). We mainly focus on answering the following research questions:

RQ1: How does Fed-ANIDS perform in comparison to other baselines (Generative

Adversarial Network (GAN), and a Bidirectional GAN (BiGAN)) according to

various intrusion detection metrics?

RQ2: What is the most efficient distributed algorithm when comparing FedProx and

FedAvg?

72

5.4. Experiments and results

RQ3: What is the performance of Fed-ANIDS when training data comes from various

environments, and how does the proposed method perform with previously

unseen data?

5.4.1 Datasets

We consider three well-known datasets, namely, USTC-TFC2016 [28], CIC-IDS2017

[29], and CSE-CIC-IDS2018 5. We split USTC-TFC2016 at a 70-20-10 ratio for train-

ing, validation, and test sets. For CIC-IDS2017, we pick the first four days of data

for training and validation (Monday through Thursday) and we test on Friday data.

Since there are two weeks of data in CSE-CIC-IDS2018, we allocate the first week for

training and validation, while we preserve the second week for testing.

In real-world scenarios, normal data in network intrusion detection is generally

more abundant than attack samples due to the nature of network traffic. Considering

the prevalence of normal network traffic, training an anomaly-based intrusion detec-

tion system solely on normal data is a practical approach. Therefore, in this work,

before partitioning the data over clients, only the normal samples are left in the train-

ing and validation sets. In contrast, the remaining attack samples are included in the

test set. Finally, the training set is equally and randomly partitioned between all the

clients in the system, ensuring a fair distribution of normal data for training. Figure

5.4 depicts the distribution of benign and attack samples of each dataset.

5.4.2 Experimental settings

In this work, we consider a distributed environment of K = 10 clients in total. We

fix the client fraction at C = 0.5. We set the local iterations at I = 10 and the global

communication rounds at E = 30 epochs for USTC-TFC2016 and CIC-IDS2017 and

E = 10 for CSE-CIC-IDS2018. For training hyperparameters, we use the validation

set to find the best combination that maximizes the performance. For the regulariza-

tion parameter for FedProx, we tested the values in the candidate set {0.1, 0.01, 0.001,

1e-4, 1e-5, 1e-6}. As for the learning rate and weight decay, we tested the values in

the range {0.01, 0.001, 1e-4, 1e-5} and {1e-4, 1e-5, 1e-6} respectively.

The AE architecture adopted in this work consists of two components, namely an

encoder and a decoder, which are modeled as two fully-connected layer networks

specified by the following number of neurons per layer (87-64-32) and (32-64-87), re-

spectively. Each layer is followed by a ReLU activation function. Similarly, the VAE

5https://www.unb.ca/cic/datasets/ids-2018.html

73

5.4. Experiments and results

Table 5.2: Performance evaluation of Fed-ANIDS with USTC-TFC2016 dataset.

Fed-ANIDS(ours) Baseline

AE VAE AAE GAN BiGAN

Metrics FedAvg FedProx FedAvg FedProx FedAvg FedProx FedAvg FedProx FedAvg FedProx

F1-score (%) 99.35 99.44 99.79 99.77 99.93 99.94 94.96 96.77 61.02 72.78
FDR (%) 0.46 0.22 0.39 0.01 0.18 0.18 9.90 8.45 5.14 15.43
Accuracy (%) 99.54 99.60 99.85 99.84 99.94 99.95 96.38 97.66 81.40 84.68

Table 5.3: Performance evaluation of Fed-ANIDSwith CIC-IDS2017 dataset.

Fed-ANIDS(ours) Baseline

AE VAE AAE GAN BiGAN

Metrics FedAvg FedProx FedAvg FedProx FedAvg FedProx FedAvg FedProx FedAvg FedProx

F1-score (%) 92.51 92.73 60.96 62.09 80.11 77.17 80.28 74.95 71.24 78.12
FDR (%) 1.75 1.69 49.49 45.66 0.34 5.60 24.68 34.99 30.39 34.96
Accuracy (%) 93.36 93.54 64.34 66.56 83.94 81.62 81.90 76.28 74.97 78.63

Table 5.4: Performance evaluation of Fed-ANIDSwith CSE-CIC-IDS2018 dataset.

Fed-ANIDS(ours) Baseline

AE VAE AAE GAN BiGAN

Metrics FedAvg FedProx FedAvg FedProx FedAvg FedProx FedAvg FedProx FedAvg FedProx

F1-score (%) 88.48 86.41 89.40 90.64 45.51 45.52 47.85 46.60 55.01 55.12
FDR (%) 1.51 0.60 2.14 1.81 16.67 16.66 17.13 16.85 14.75 12.92
Accuracy (%) 92.90 91.08 93.72 94.48 83.34 83.34 75.58 80.77 72.95 73.36

architecture consists of four layers such that (87-64-64-32) and (32-64-64-87) are the

number of neurons per layer for the encoder and the decoder, respectively. For AAE,

we model both the encoder and the decoder as three fully-connected layer networks

specified by the following number of neurons per layer (87-16-4-2) and (2-4-16-87),

respectively. Each layer is followed by a LeakyReLU activation function. Similarly,

the discriminator consists of three fully-connected layers specified by the following

number of neurons per layer (16-4-2). Each layer is followed by a LeakyRelu activa-

tion function except the last layer which is followed by a sigmoid function.

To evaluate the performance of our approach, we consider three standard intru-

sion detection metrics, F1-score, Accuracy, and False Discovery Rate (FDR). Note that

FDR represents the ratio of falsely reported anomalies to total anomalies. We use

Python and ML libraries such as PyTorch, Numpy, and Pandas to perform all exper-

iments. This work was carried out using the African SuperComputing Center HPC

service, supported by Mohammed VI Polytechnic University6.

74

5.4. Experiments and results

5.4.3 Performance evaluation

To make our evaluations credible, we compare Fed-ANIDSwith prior works that have

a similar context. [86] introduced a system that leverages AD and FL for intrusion

detection. The proposed system is mainly based on GANs [57] which are commonly

employed across diverse fields, including computer vision and anomaly detection.

According to our proposed method, we implemented two baseline models and

evaluated their performances with USTC-TFC2016, CIC-IDS2017, and CSE-CIC-

IDS2018. The first model is a simple GAN while the second model is a BiGAN [117].

The latter has the ability to learn rich representations in applications like unsuper-

vised learning and anomaly detection [118]. Both Autoencoders and GANs are un-

supervised learning techniques that can be used for network intrusion detection. The

two other major distinctions between our work and [86] are 1) we use the FedProx

FL technique, unlike the work of [86] which uses the FedAvg FL technique and 2) we

perform all evaluations with cleaner versions of flow features extracted from USTC-

TFC2016, CIC-IDS2017, and CSE-CIC-IDS2018 datasets, while [86] have conducted

their experiments on images generated from NSL-KDD7, KDD [97], and UNSW-NB15

[111] datasets. The format of datasets is important in an FL network. Tabular datasets

that contain various features extracted from raw traffic are more interpretable, require

less storage, and result in a smaller global model size when compared to raw traffic

image datasets. Considering that the edge entities in FL systems usually have limited

resources, we work with flow features-based datasets.

Table 5.2 provides the obtained results when evaluating our model with the

USTC-TFC2016 dataset. We observe that AAE with the FedProx algorithm yields the

best results with the highest F1-score of 99.94% and accuracy of 99.95% and the small-

est FDR value of 0.18%, followed by VAE and AE which also perform well. On the

contrary, GAN and BiGAN perform poorly, especially BiGAN which induces a high

FDR with a low F1-score and accuracy. In addition, FedProx is always on par or better

than FedAvg for all models. Table 5.3 presents the evaluation performance with CIC-

IDS2017. We observe that a simple AE trained with FedProx outperforms all other

models, with an accuracy that exceeded 93% and the lowest FDR of 1.693%. Lastly,

Table 5.4 gives the scored results when using the CSE-CIC-IDS2018 dataset. VAE is

found to be more effective in terms of F1-score and accuracy. The simple AE model

6https://ondemand.hpc.um6p.ma/
7http://nsl.cs.unb.ca/NSL-KDD/

75

5.4. Experiments and results

achieved the best FDR 0.6% at the cost of a drop in F1 score and accuracy. Overall,

the simple AE model is the best-performing model.

For each dataset, at least one of the autoencoder-based approaches with FedProx

outperforms other GAN-based models. Thus, our findings suggest that in the context

of NIDS, autoencoders are more effective in detecting potential threats compared to

GAN-based approaches. Therefore, solutions for network intrusion detection in real-

world scenarios that are based on autoencoders would be more appropriate than

GAN-based solutions since they are simple, light, and computationally efficient.

5.4.4 Model generalization for heterogeneous networks

We also evaluate the generalization performance of Fed-ANIDS according to three

scenarios using the three previously presented datasets (which are collected from

different sources and environments). The first scenario consists of training the model

using a subset of USTC-TFC2016 and CIC-IDS2017 datasets. The second scenario

builds the model with USTC-TFC2016 and CSE-CIC-IDS2018 datasets. The last sce-

nario optimizes the model with CIC-IDS2017 and CSE-CIC-IDS2018. For each sce-

nario, we evaluate the model with a subset of the testing set of all datasets, such that,

for each scenario one of the datasets was never seen before. These scenarios allow us

to test the generalization strength of the proposed model under FL in two ways: 1)

how well the model generalizes when training with two datasets collected in different

environments, and 2) how the model performs with a new dataset never seen before.

Considering a network of twenty clients in total, we select the simple autoencoder

(AE) as the autoencoder-based model and we split two datasets among ten clients

each (e.g. USTC-TFC2016 and CIC-IDS2017) then we train the model for E = 30

rounds such that at each round third of the clients are chosen randomly (C = 0.3).

Once the training is completed, we evaluate the model not only on the two datasets

used for training but also on a third one never seen before (e.g. CSE-CIC-IDS2018).

Table 5.5: Baselines testing results of a simple AE trained on USTC-TFC2016, CIC-
IDS2017 and CSE-CIC-IDS2018 datasets seperatly.

USTC-TFC2016 CIC-IDS2017 CSE-CIC-IDS2018

Metrics FedAvg FedProx FedAvg FedProx FedAvg FedProx

F1-score (%) 99.35 99.44 68.00 68.16 79.91 89.46
FDR (%) 0.47 0.23 0.14 0.14 1.03 1.91
Accuracy (%) 99.54 99.60 93.72 93.79 84.55 93.01

76

5.4. Experiments and results

Prior to the generalization evaluation of Fed-ANIDS, Table 5.5 presents the base-

line results of the simple AE model when training separately on each dataset. Tables

5.6, 5.7 and 5.8 provide the evaluation results for the three scenarios of generalization.

Compared to the baseline (Table 5.5), we observe that in most cases the performance

deteriorates in terms of all metrics and the model cannot generalize on seen and un-

seen datasets. However, the decrease in performance is much larger for some cases

than others. For instance, when considering the first scenario (see Table 5.6), on the

one hand, the performance dropped drastically for USTC-TFC2016 despite it being

used for training. On the other hand, the model could generalize relatively well on

CSE-CIC-IDS2018 which was never seen during training. On the contrary, in the

second scenario (see table 5.7) the model could not generalize on the CIC-IDS2017

dataset, which was never seen, yet it performed well on USTC-TFC2018 and CSE-

CIC-IDS2018 datasets used for training. Lastly, in table 5.8, the model performs well

on the CSE-CIC-IDS2018 dataset but achieves poor results on USTC-TFC2016 and

CIC-IDS2017. These results can be attributed to the difference in the dataset size,

where CSE-CIC-IDS2018 is almost five times bigger than USTC-TFC2016 and CIC-

IDS2017. In view of all the obtained results, the FedProx algorithm yields much better

results compared to FedAvg, in some cases up to 10% F1-score and accuracy and more

than 6% FDR. This can be explained by the fact that the FedProx algorithm tackles the

heterogeneity challenge in federated networks.

Table 5.6: Testing results of a simple AE trained on USTC-TFC2016 and CIC-IDS2017.

Seen Datasets Unseen Dataset

USTC-TFC2016 CIC-IDS2017 CSE-CIC-IDS2018

Metrics FedAvg FedProx FedAvg FedProx FedAvg FedProx

F1-score (%) 71.51 78.79 58.12 66.02 64.25 65.14
FDR (%) 41.04 31.25 0.34 0.32 0.078 0.08
Accuracy (%) 72.36 79.80 87.52 93.24 67.38 68.40

Table 5.7: Testing results of a simple AE trained on USTC-TFC2016 and CSE-CIC-
IDS2018.

Seen Datasets Unseen Dataset

USTC-TFC2016 CSE-CIC-IDS2018 CIC-IDS2017

Metrics FedAvg FedProx FedAvg FedProx FedAvg FedProx

F1-score (%) 80.53 89.27 74.51 85.44 48.69 58.18
FDR (%) 7.98 1.25 3.63 2.41 0.06 0.14
Accuracy (%) 83.72 90.70 80.16 89.95 72.81 86.76

77

5.5. Summary

Table 5.8: Testing results of a simple AE trained on CIC-IDS2017 and CSE-CIC-
IDS2018.

Seen Datasets Unseen Dataset

CIC-IDS2017 CSE-CIC-IDS2018 USTC-TFC2016

Metrics FedAvg FedProx FedAvg FedProx FedAvg FedProx

F1-score (%) 45.47 49.83 80.09 85.87 66.41 67.68
FDR (%) 1.31 1.18 5.28 4.87 42.07 43.93
Accuracy (%) 71.32 80.00 86.45 91.13 69.4 69.16

5.4.5 Distributed vs centralized learning for Anomaly-based NIDS

This section aims to compare the performance of Fed-ANIDS, which is based on FL,

with a centralized learning setting. Centralized learning requires all the data to be

transferred to a central server for training, meaning that no computation is carried out

by the clients. We conducted experiments on the three previously mentioned datasets

for each autoencoder variant (AE, VAE, and AAE). For the centralized setting, all data

was preprocessed by the central entity, which is also the one in charge of training and

testing. Figure 5.5 illustrates the performance comparison between Fed-ANIDSand

centralized learning according to F1-score, accuracy, and FDR. In terms of both the ac-

curacy and the F1-score, the results show that Fed-ANIDSachieves comparable or bet-

ter performance than centralized learning. Specifically, the centralized performance

is generally reached by Fed-ANIDSand sometimes even surpassed. Similarly for FDR,

Fed-ANIDSmostly scores lower FDR than centralized learning. This demonstrates the

potential of usingFL for anomaly-based NIDS that successfully reaches or exceeds the

centralized performance while preserving the privacy of clients. Furthermore, the use

of FL in such systems also reduces the latency and bandwidth consumption since the

data is processed locally on each client’s device rather than being sent to a central

server.

5.5 Summary

In this chapter, we introduced Fed-ANIDS an AE-based approach that incorporates

FL and anomaly detection for intrusion detection in distributed networks. Fed- ef-

ficiently enables secure model training and robust intrusion detection by leveraging

the benefits of FL and those of autoencoders. We have built the proposed method

with three variants of autoencoders, namely, simple AE, VAE, and AAE, and we

adopt FedProx as the FL algorithm. With a series of experiments and evaluations

conducted on three well-known flow-based datasets (USTC-TFC2016, CIC-IDS2017,

78

5.5. Summary

Figure 5.5: Comparion between Fed-ANIDSand centralized learning.

and CSE-CIC-IDS2018), we have demonstrated the effectiveness of the proposed

method in detecting network intrusions with high accuracy and low false alarms

79

5.5. Summary

while preserving privacy. Additionally, Fed-ANIDS significantly outperforms other

GAN-based models. We also show that the FedProx algorithm adopted in Fed-ANIDS

is always on par or better than FedAvg.

80

6 Flow Timeout and the

Performance of ML Models

for NIDS

6.1 Introduction

In today’s era of high-speed networks and massive data volumes, network security

and cybersecurity technologies and systems such as NIDS, Network Security Mon-

itoring (NSM), and Industrial Control Systems (ICS) are increasingly shifting their

focus from payload-based approaches to a growing reliance on flow-based methods.

The substantial volume of network traffic makes the examination of each packet im-

practical and resource-intensive. Thus flow-based methods [119, 120] emerge as a

practical and highly efficient alternative. Unlike payload-based approaches [121],

which involve inspecting the complete content of packets, including both headers

and payload, flow-based methods leverage aggregated network information in the

form of flows [122]. This approach substantially reduces the volume of data requir-

ing analysis, thereby minimizing the time and resources needed for detecting and

responding to potential threats.

Integrating ML techniques into flow-based approaches for Network Security Sys-

tems (NSS) enhances the efficacy of these tools. Through the utilization of ML algo-

rithms, the analysis of network flows not only gains precision but also adapts to the

evolving nature of threat landscapes. This integration plays a pivotal role in signifi-

cantly reducing the volume of data that requires analysis, thus minimizing the time

and resources essential for detecting and responding to potential threats. Yet, it is

crucial to emphasize that the effectiveness of these models is tied to the quality of the

81

6.2. Problem statement

flow features used in the learning process [17]. Choosing and extracting pertinent

features from network traffic data is crucial for the overall performance and accu-

racy of these ML-based NIDS solutions. Consequently, the feature extraction process

significantly impacts these systems’ capabilities to identify and effectively mitigate

emerging threats. To extract network flow features, several tools are available such

as NFStream [12], CICFlowMeter1, and nProbe2. These tools are vital for collect-

ing and analyzing network flows, generally relying on a set of hyperparameters that

configure and govern various aspects of the feature extraction process. These hyper-

parameters influence how features are selected, extracted, and represented from the

raw network flow data, thus impacting the quality of the extracted features. One of

these properties is the time interval, comprising two timeouts, an active and an idle

(inactive) timeout [13]. Modifying the values of these two parameters leads to the ex-

traction of different features, potentially influencing the performance of ML models

that rely on these features for their learning and decision-making processes.

6.2 Problem statement

Network analysis software and IDS, both open-source (such as Snort [3] and Suricata

[4]), and commercial (such as Palo Alto Networks [123] and Fortinet [124]) incorpo-

rate configurations for both active and idle timeouts. While many of these solutions

come with predefined and optimal values for these parameters, it is important to note

that there are instances where these values may not align with the specific require-

ments of the network. Opting for a value that is too low can heighten sensitivity to

minor network delays. On the other hand, choosing an excessively high session time-

out may result in delayed detection of failures. Moreover, when constructing NIDS

datasets from the flow data, the quality and relevance of the extracted features highly

depend on the idle and active timeouts. Therefore flow timeouts hold substantial im-

portance in the development and assessment of network IDS.

Throughout our literature review, we have noticed that the prevalent approach to

configuring flow timeouts involves either adhering to the pre-configured values for

both idle and active timeouts throughout the feature extraction process or opting to

set new ones without providing substantial justification for their selection [125, 126].

Surprisingly, limited attention has been devoted to investigating the potential rami-

fications of altering these parameter values on the quality of extracted features and

1https://github.com/ahlashkari/CICFlowMeter
2https://www.ntop.org/guides/nprobe/cli_options.html

82

6.3. Design of experiments

the subsequent impact on ML models’ performance. This chapter seeks therefore to

bridge this notable knowledge gap. Its primary goal is to thoroughly investigate the

effect of employing different values for both idle and active timeouts while utilizing

various ML models. By doing so, we shed light on whether there is a compelling

value for these two parameters before the feature extraction phase. Such insights are

critical in optimizing NIDS systems and enhancing their ability to detect and respond

to emerging security threats.

6.3 Design of experiments

In this section, we delve into the core elements of our experimental design. First,

we present an in-depth exploration of both active and idle timeouts, shedding light

on their direct impact on feature extraction and, subsequently, on the overall per-

formance of ML models. Following this, we present the feature extraction pipeline

employed throughout our study. Then, we provide a brief description of the ML

models leveraged in our research. Finally, we discuss the FL setting adopted to as-

sess the performance in a decentralized environment for heterogeneous NIDS. Figure

6.1 summarises the overflow of the proposed design of experiments. The series of ex-

periments conducted in this work, aim to answer the following research questions:

Internet

 NFStream

Training set
Packets

Packet observation Flow Metering Flow export

Testing set

Training

Inference

Idle timeout
Active timeout

Extracted features

Baseline features

Feature selection

New features

ML models

Extra trees

Multi-layer
perceptron

Random forest

Figure 6.1: The overflow of the proposed design of experiments.

- RQ1: What is the impact of idle and active timeouts on the performance of three

well-known ML models?

- RQ2: Within diverse feature sets of network flows, does a particular combi-

nation of idle and active timeouts exhibit superior performance compared to

others?

83

6.3. Design of experiments

- RQ3: In the context of a real-world scenario involving multiple NIDS with

varying idle and active timeout settings, is it possible to construct a global

model with federated learning that delivers strong performance across all these

diverse environments?

- RQ4: Taking into account the responses to the preceding research questions,

can we provide recommendations regarding the utilization of specific idle and

active timeouts in the context of ML-based NIDS?

6.3.1 Feature extraction

In this work, we use NFStream [12] to extract features from raw traffic packets. Our

selection was guided by the following considerations: 1) NFStream framework is

open-source and enables the analysis of network traffic flow with high throughput on

standard hardware. 2) NFStream can identify the applications that generate network

traffic flows. This feature, also known as application awareness, is achieved by inte-

grating the nDPI library3. 3) NFStream uses parallelism to achieve high-speed live

network traffic measurement. 4) NFStream supports tunnel decoding (GTP, CAP-

WAP, and TZSP), which allows it to accurately identify packets that originate from

different flows. 5) NFStream is a flow-based measurement framework that can be

used with ML libraries such as TensorFlow [127] and PyTorch [128]. 6) NFStream is

extensible, making it possible to create and extract new flow features with just a few

lines of Python code.

Furthermore, we build a set of flow features based on four distinct sources, in-

cluding the features proposed by NFStream [12], the features selected in the work

[129], the features introduced in the open source framework [130], and features de-

veloped by our team. Table 6.1 presents the set of features created by our team and

their descriptions. In addition, we provide in the appendix 8.3 the list of features

presented in both works [129] and [130]. The standard features of NFStream [12] can

be found in the documentation page 4.

6.3.2 Model training

Empirical Risk Minimization (ERM) aims at finding model parameters that optimize

the empirical risk, generally quantified by a loss function. However, the quality and

3https://www.ntop.org/products/deep-packet-inspection/ndpi/
4https://www.nfstream.org/docs/api#nflow

84

6.3. Design of experiments

Table 6.1: Set of features developed by our team.

Feature Description

tcp_init_ms Time in ms between first SYN and SYN-ACK packet
tcp_synack_ack_ms Time in ms between SYN-ACK packet and its acknowledgment
tcp_half_closed_time_ms Time in ms that connection is half closed
num_pkts_after_termination The number of packet received in 15s after the four-way handshake
bidirectional_transport_bytes Total bytes of exchanged transport segments
bidirectional_payload_bytes Total bytes of exchanged packets payload
src2dst_transport_bytes SRC2DST total bytes of exchanged transport segments
src2dst_payload_bytes SRC2DST total bytes of exchanged packets payload
dst2src_transport_bytes DST2SRC total bytes of exchanged transport segments
dst2src_payload_bytes DST2SRC total bytes of exchanged packets payload

representativeness of the data are paramount, if the data used during the optimiza-

tion process is biased or noisy, the model’s likelihood of scoring optimal results is low,

regardless of the algorithm employed. As the task at hand is a multi-class classifica-

tion, we used three well-known ML classifiers (different learning algorithm classes)

to study the impact of idle and active timeouts on network intrusion detection perfor-

mance, namely, ET, RF, and MLP classifiers.

6.3.3 Distributed learning in multiple timeouts environment

To assess the potential of distributed learning within the context of multiple NIDS,

each characterized by a particular set of idle and active timeouts, we’ve opted to

utilize the federated learning framework. Federated learning is a decentralized ML

approach where a global model is collaboratively trained across multiple decentral-

ized devices or data sources, all while keeping data localized. This approach offers

advantages, including enhanced privacy, scalability, and efficiency. Our decision to

employ federated learning aims to explore its potential benefits within the context of

our specific learning task of heterogeneous network intrusion detection systems. By

leveraging this decentralized approach, we aim to gain a deeper understanding of

its applicability and effectiveness in managing diverse NIDS with varying configura-

tions. Moreover, we seek to uncover whether federated learning can deliver superior

results in terms of threat detection compared to traditional centralized approaches.

In our simulation of the distributed setting, we model it as a system consisting

of K clients (NIDS) and a central server. Each client possesses data collected with a

particular idle and active timeout (Ta,k, Ti,k). During each communication round, a

fraction C of clients is selected randomly to collectively optimize the global model.

Initially, the server initializes and disseminates the global model to the selected clients

in the first round. Subsequently, each client individually optimizes the model using

85

6.4. Experiments and results

its local data for E local epochs and then sends the model’s weight updates back to

the server. Once all the updates are received from the participating clients, the server

aggregates the local models and updates the global model. The new global model is

then shared with the participating clients in the subsequent round. These steps are

repeated until convergence is reached, i.e., the loss reaches a steady state. Figure 6.2

depicts the federated learning setting.

....

Lo
ca

l M
od

el

Local M
odel

Aggregation

NIDS #1 NIDS #K

N
ew

 G
lo

ba
l M

od
el

Figure 6.2: Distribued learning using federated learning.

6.4 Experiments and results

This section provides the implementation details and discusses the performance eval-

uation across four well-known datasets using three ML classifiers. The evaluation is

examined from four perspectives: timeout-based, model-based, feature-based, and

distributed learning performances.

6.4.1 Implementation details

To evaluate the proposed method in the centralized setting, we consider three clas-

sifiers defined in the Scikit-learn library [131]. Extra Trees Classifier (ETC), Random

Forest Classifier (RFC), and Multilayer perceptron (MLP). The ETC and RFC models

used are both constructed of 100 decision trees. Whereas the MLP model is trained

for 1000 iterations with the default parameters. Each model is trained and evaluated

on four well-known and public datasets, USTC-TFC2016, UNSW-NB15, CUPID, and

86

6.4. Experiments and results

CIC-IDS2017. For each dataset, we allocate two-thirds of the total size of the data to

the training and one-third to the testing.

For the distributed scheme, we consider an environment of 32 clients, each own-

ing local data extracted using a particular and unique idle and active timeout couple.

We adopt the standard FL algorithm, FedAvg [58]. At each communication round a

subset of fraction C = 0.5 is selected to optimize the global model on their local data

for E = 5 epochs. The process is repeated for R = 15 communication rounds for the

USTC-TFC2016 dataset and R = 10 for the CUPID, CIC-IDS2017, and UNSW-NB15

datasets. We define the global model as an MLP neural network consisting of three

fully connected layers specified by the following number of neurons per layer (57, 32,

16).

Figure 6.3: All 32 combinations of idle and active timeouts

To thoroughly evaluate the proposed methodology, we consider 32 combinations

of idle and active timeouts. Figure 6.3 presents all the combinations used for evalu-

ation, the idle timeout (min) take values from [0.5, 1, 2, 3, 4, 5, 6, 10] and the active

timeouts (min) varies within the list [2, 3, 4, 5, 30, 60]. It is important to notice that

the idle timeout is always less than or equal to the active timeout (idle ď active). For

each tuple, we train ETC, RFC, and MLP models and we measure the performance

in terms of four well-established metrics commonly used for intrusion detection: F1-

score, Accuracy, Recall, and Precision. We record the best and worst timeouts for each

dataset and model. The ’best timeout’ denotes the specific combination of idle and

active timeouts used for feature extraction, which yielded the highest performance

87

6.4. Experiments and results

for the ML model. Conversely, the ’worst timeout’ represents the combination that

resulted in the poorest model performance.

Experiments presented in this study were provided by the computing facilities of

High Performance Computing simlab-cluster, of Mohammed VI Polytechnic Univer-

sity at Benguerir.

6.4.2 Performance evaluation

In the following, we present all the experiments and evaluations performed to study

the impact of idle and active timeouts on the performance of NIDS ML models. In the

first set of experiments, we measure the network intrusion detection performance of

ETC, RFC, and MLP models for each datasets using the NFStream standard feature

set computed based on the 32 pairs of idle and active timeouts. Tables 6.2, 6.3, 6.4,

and 6.5 present the recorded best and worst idle and active timeouts (Ta, Ti) tuples

and their performance difference for USTC-TFC16, CIC-IDS2017, UNSW-NB15, and

CUPID datasets, respectively. For each dataset, we observe a unique (Ta, Ti) tuple

that achieves the optimal performance, showing that the best timeout for a dataset

can be the worst in another dataset. For instance, the pair (1, 60) is the best timeout

tuple when the CIC-IDS2017 dataset is used, however, it is the worst in the case of

UNSW-NB15 dataset. Furthermore, even if we focus on one dataset it becomes evi-

dent that there is no timeout tuple that excels with all three ML models. A timeout

tuple could, without varying the environment (dataset), score the best results with

one model and the worst results with another. For instance, in Table 6.5, for the same

dataset CUPID, the timeout tuple (10, 30) achieves the best score when using the ETC

model, but the worst with the RFC model. It is worth mentioning that when using

the CIC-IDS2017 dataset the best performances are scored when the active timeout is

large (60 minutes) and the idle timeout is small (1 minute and 0.5 minutes). When

analyzing the F1-score performance difference between the best and worst timeouts,

we note two major points: 1) ETC and RFC models are more stable than MLP. In ta-

bles 6.2, 6.3, 6.4, and 6.5 the computed performance difference of the MLP model is

always greater than 6% and can reach up to „14%, however, the computed perfor-

mance difference of the ETC and RTC models are less than 2.5% except for the case

of CIC-IDS2017 dataset. 2) For some datasets (CIC-IDS2017), the performance dif-

ference shows that it is mandatory to fine-tune the idle and active timeouts. Yet, for

some datasets (CUPID, UNSW-NB15) and with the right model the idle and active

timeouts have little impact on the performance.

88

6.4. Experiments and results

Table 6.2: Performance evaluation of ML models using the NFStream standard fea-
ture set with USTC-TFC2016.

Best timeouts Worst timeouts Performance Difference

Metrics ETC RFC MLP ETC RFC MLP ETC RFC MLP

F1-score (%) 87.19 87.35 82.42 85.91 84.92 76.30 1.28 2.43 6.12
Recall (%) 86.63 86.44 82.84 84.84 85.66 77.40 1.79 0.78 5,44
Precision (%) 88.68 89.55 87.47 88.83 85.74 80.19 -0.15 3.81 7.28
Accuracy (%) 90.50 90.44 87.57 89.25 89.95 83.97 1.25 0.49 3.6

Timeouts (10, 60) (2, 2) (2, 3) (0.5, 3) (4, 5) (4, 60) - - -

Table 6.3: Performance evaluation of ML models using the NFStream standard fea-
ture set with CIC-IDS2017.

Best timeouts Worst timeouts Performance Difference

Metrics ETC RFC MLP ETC RFC MLP ETC RFC MLP

F1-score (%) 94.37 92.10 92.70 88.08 84.11 78.51 6.29 7.99 14.19
Recall (%) 91.02 88.77 90.75 85.41 82.47 81.37 5.61 6.3 9.38
Precision (%) 99.75 99.72 97.39 93.17 86.45 83.75 6.58 13.27 13.64
Accuracy (%) 99.78 99.79 99.76 99.77 99.76 99.75 0.01 0.03 0.01

Timeouts (1, 60) (0.5, 60) (0.5, 60) (3, 5) (3, 5) (2, 4) - - -

Table 6.4: Performance evaluation of ML models using the NFStream standard fea-
ture set with UNSW-NB15.

Best timeouts Worst timeouts Performance Difference

Metrics ETC RFC MLP ETC RFC MLP ETC RFC MLP

F1-score (%) 73.95 73.32 56.13 72.98 72.64 49.16 0.97 0.68 6.97
Recall (%) 70.11 69.40 53.76 69.29 68.59 47.87 0.82 0.81 5.89
Precision (%) 83.32 83.18 64.42 81.07 79.67 71.43 2.25 3.51 -7.01
Accuracy (%) 99.07 99.08 98.91 99.05 99.08 98.80 0.02 0 0.11

Timeouts (3, 4) (1, 30) (0.5, 4) (0.5, 60) (2, 60) (1, 60) - - -

Table 6.5: Performance evaluation of ML models using the NFStream standard fea-
ture set with CUPID.

Best timeouts Worst timeouts Performance Difference

Metrics ETC RFC MLP ETC RFC MLP ETC RFC MLP

F1-score (%) 93.74 92.77 91.81 92.53 92.11 84.68 1.21 0.66 7.13
Recall (%) 91.23 90.25 89.25 90.03 89.61 80.18 1.2 0.64 9.07
Precision (%) 99.19 99.18 98.2 99.13 99.06 96.42 0.06 0.12 1.78
Accuracy (%) 96.29 96.18 96.60 95.95 95.60 96.21 0.34 0.58 0.39

Timeouts (10, 30) (2, 30) (1, 3) (4, 30) (10, 30) (3, 30) - - -

In our forthcoming series of experiments, we redirect our focus toward examining

the relationship between flow features and both idle and active timeouts. We used

all flow features described in Section 6.3.1 which consists of the features proposed by

NFStream [12], the features selected in the work [33], the features introduced in the

open source framework [130], and features developed by our team (see Table 6.1).

Similar to the previous set of experiments, tables 6.6, 6.7, 6.8, and 6.9 present the

best and worst obtained results with their difference when all flow features are used

with all 32 idle and active timeouts combinations. The MLP model performance has

89

6.4. Experiments and results

significantly increased, for instance, the F1-score increased from 82.42% to 89.75%

with the USTC-TFC2016 dataset. Similarly, the performance is on par or better when

ETC or RFC are used with the expanded flow feature set. Furthermore, we observe

that the ETC model’s likelihood to achieve higher performance is big when the active

timeout is large (60 minutes). However, considering all the scores there is no timeout

pair that achieves top performance with all datasets and models.

Table 6.6: Performance evaluation of ML models using all flow features (from 4
sources) with USTC-TFC2016.

Best timeouts Worst timeouts Performance Difference

Metrics ETC RFC MLP ETC RFC MLP ETC RFC MLP

F1-score (%) 91.50 91.62 89.75 90.47 90.56 88.35 1.03 1.06 1.4
Recall (%) 91.06 90.92 89.30 89.72 89.75 88.11 1.34 1.17 1.19
Precision (%) 92.89 93.61 92.39 93.10 93.13 91.51 -0.21 0.48 0.88
Accuracy (%) 94.68 94.77 93.89 93.99 94.04 93.27 0.69 0.73 0.62

Timeouts (10, 60) (2, 2) (2, 3) (0.5, 3) (0.5, 2) (3, 4) - - -

Table 6.7: Performance evaluation of ML models using all flow features (from 4
sources) with CIC-IDS2017.

Best timeouts Worst timeouts Performance Difference

Metrics ETC RFC MLP ETC RFC MLP ETC RFC MLP

F1-score (%) 94.15 92.50 94.19 88.13 84.80 77.13 6.02 7.7 17.06
Recall (%) 90.76 88.37 92.82 85.45 81.64 76.21 5.31 6.73 16.61
Precision (%) 99.93 99.85 99.07 93.22 93.14 78.70 6.71 6.71 20.37
Accuracy (%) 99.63 99.04 99.81 99.63 98.73 99.76 0 0.31 0.05

Timeouts (10, 60) (0.5, 60) (0.5, 60) (3, 5) (3, 4) (3, 4) - - -

Table 6.8: Performance evaluation of ML models using all flow features (from 4
sources) with UNSW-NB15.

Best timeouts Worst timeouts Performance Difference

Metrics ETC RFC MLP ETC RFC MLP ETC RFC MLP

F1-score (%) 74.63 73.87 63.30 73.55 73.06 60.61 1.08 0.81 2.69
Recall (%) 70.64 69.58 59.44 69.11 68.54 55.77 1.53 1.04 3.67
Precision (%) 83.29 84.34 71.34 82.60 90.60 76.19 0.69 -6.26 -4.85
Accuracy (%) 99.11 99.10 98.99 99.09 99.08 98.92 0.02 0.02 0.07

Timeouts (5, 5) (5, 60) (1, 4) (0.5, 30) (1, 2) (2, 2) - - -

Table 6.9: Performance evaluation of ML models using all flow features (from 4
sources) with CUPID.

Best timeouts Worst timeouts Performance Difference

Metrics ETC RFC MLP ETC RFC MLP ETC RFC MLP

F1-score (%) 95.33 94.91 94.57 94.22 92.79 89.68 1.11 2.12 4.89
Recall (%) 93.01 92.51 92.15 91.73 90.23 91.92 1.28 2.28 0.23
Precision (%) 99.43 99.39 99.30 99.36 99.24 92.01 0.07 0.15 7.29
Accuracy (%) 97.26 97.11 96.81 96.86 96.36 96.92 0.4 0.75 -0.11

Timeouts (2, 60) (5, 5) (4, 30) (2, 5) (3, 3) (4, 4) - - -

90

6.4. Experiments and results

Since the scores increased when all flow features were used, we performed vari-

ous experiments to ascertain the relative importance of features and to identify any

relationship between features and timeout pairs. Thus, we build two new feature sets

using a feature selection strategy that consists of 1) computing features’ importance

using the ETC algorithm; 2) sorting features based on their importance; and 3) select-

ing 30% and 50% from the sorted list of features. Next, we evaluate the ETC model

with the two new feature sets and all combinations of the active and idle timeouts.

We justify the selection of the ETC model to perform these evaluations by the fact

that, overall, it consistently exhibits higher levels of effectiveness and stability in the

previous set of experiments. Tables 6.10, 6.11, 6.12, and 6.13 presents the obtained

best and worst measures when using the ETC model with feature selection strategy.

We noticed that the likelihood of scoring the best performances is high when both

timeouts are large (idle ě 5 minutes, active ě 30 minutes). However, the application

of the feature selection strategy has not yielded substantial improvements in model

performance when compared with evaluations with all flow features. In fact, there

are instances where implementing feature selection has resulted in a decline in the

model’s performance in terms of different metrics.

Table 6.10: ETC model performance evaluation using feature selection with USTC-
TFC2016.

Best timeouts Worst timeouts

Metrics ETC (30%) ETC (50%) ETC (30%) ETC (50%)

F1-score (%) 91.36 91.53 90.51 90.51
Recall (%) 90.96 91.06 89.72 89.73
Precision (%) 92.91 92.94 93.08 93.13
Accuracy (%) 94.62 94.69 94.02 94.02

Timeouts (10, 30) (10, 60) (0.5, 30) (0.5, 30)

Table 6.11: ETC model performance evaluation using feature selection with CIC-
IDS2017.

Best timeouts Worst timeouts

Metrics ETC (30%) ETC (50%) ETC (30%) ETC (50%)

F1-score (%) 93.44 93.43 87.24 87.74
Recall (%) 89.5 89.47 83.47 84.17
Precision (%) 99.90 99.91 93.19 93.28
Accuracy (%) 99.63 99.64 98.89 99.59

Timeouts (10, 60) (10, 30) (2, 5) (4, 5)

Given all the experiments done so far, we can answer the two research questions

(RQ1 and RQ2) related to the relationship between idle and active timeouts with flow

features and models performances. Overall, we notice that the ETC model achieves

91

6.4. Experiments and results

Table 6.12: ETC model performance evaluation using feature selection with UNSW-
NB15.

Best timeouts Worst timeouts

Metrics ETC (30%) ETC (50%) ETC (30%) ETC (50%)

F1-score (%) 75.72 75.01 74.97 74.30
Recall (%) 72.25 71.24 71.57 70.57
Precision (%) 85.84 87.31 82.79 83.64
Accuracy (%) 99.10 99.11 99.09 99.10

Timeouts (2, 30) (4, 30) (0.5, 3) (1, 30)

Table 6.13: ETC model performance evaluation using feature selection with CUPID.

Best timeouts Worst timeouts

Metrics ETC (30%) ETC (50%) ETC (30%) ETC (50%)

F1-score (%) 95.29 95.16 94.64 94.56
Recall (%) 92.95 92.81 92.18 92.02
Precision (%) 99.42 99.42 99.33 99.47
Accuracy (%) 97.28 97.18 97.22 97.6

Timeouts (5, 5) (2, 60) (1, 4) (0.5, 2)

superior performance when using all the flow features with larger idle and active

timeouts. This is explained by the fact that larger timeouts gather more information

about a distinct flow which makes intrusion detection more accurate. Nevertheless,

this advantage is counterbalanced by the increased resource consumption, particu-

larly in terms of larger flow caches.

In the next set of experiments, we explore a real-case scenario of distributed NIDS

to answer the third research question RQ3. FedAvg algorithm was used to train a

global model across 32 clients, each owning data extracted using a unique (Ta, Ti)

combination. Figures 6.4, 6.5, 6.6, and 6.7 provide a visual representation of accuracy

and F1-score when evaluating the MLP classifier on the test set of each client as well

as all test sets combined for USTC-TFC2016, CICIDS2017, UNSW-NB15, and CU-

PID datasets respectively. Notably, the model exhibits varying performance levels

across different clients for the USTC-TFC2016 dataset. In other words, the perfor-

mance of the global model significantly fluctuates from client to client as idle and

active timeouts change, showing a difference of up to 25% in the F1-score. However,

while the global model may not demonstrate any noticeable performance improve-

ment on the entire test set of USTC-TFC2016, the results obtained from CIC-IDS2017,

UNSW-NB15, and CUPID datasets suggest a significant potential for enhancement.

The global model exhibits the capacity to achieve a performance level that, although

falling short of being the absolute best, remains commendably satisfactory to a certain

degree. These findings emphasize that the application of the FedAvg algorithm led to

92

6.4. Experiments and results

0.0 0.2 0.4 0.6 0.8

All
(0.5,2)

(1, 2)
(2,2)

(0.5,3)
(1,3)
(2, 3)
(3,3)

(0.5,4)
(1, 4)
(2,4)
(3,4)
(4,4)

(0.5,5)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)

(0.5, 30)
(1, 30)
(2,30)
(3,30)
(4,30)
(5,30)

(10, 30)
(0.5, 60)

(1, 60)
(2,60)
(3,60)
(4,60)
(5,60)

(10, 60)

Ti
m

eo
ut

s

(a) Accuracy

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

All
(0.5,2)

(1, 2)
(2,2)

(0.5,3)
(1,3)
(2, 3)
(3,3)

(0.5,4)
(1, 4)
(2,4)
(3,4)
(4,4)

(0.5,5)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)

(0.5, 30)
(1, 30)
(2,30)
(3,30)
(4,30)
(5,30)

(10, 30)
(0.5, 60)

(1, 60)
(2,60)
(3,60)
(4,60)
(5,60)

(10, 60)

Ti
m

eo
ut

s

(b) F1-score

Figure 6.4: Performance evaluation of FL for distributed NIDS with different time-
outs on USTC-TFC2016 dataset.

0.0 0.2 0.4 0.6 0.8 1.0

All
(0.5,2)

(1, 2)
(2,2)

(0.5,3)
(1,3)
(2, 3)
(3,3)

(0.5,4)
(1, 4)
(2,4)
(3,4)
(4,4)

(0.5,5)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)

(0.5, 30)
(1, 30)
(2,30)
(3,30)
(4,30)
(5,30)

(10, 30)
(0.5, 60)

(1, 60)
(2,60)
(3,60)
(4,60)
(5,60)

(10, 60)

Ti
m

eo
ut

s

(a) Accuracy

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

All
(0.5,2)

(1, 2)
(2,2)

(0.5,3)
(1,3)
(2, 3)
(3,3)

(0.5,4)
(1, 4)
(2,4)
(3,4)
(4,4)

(0.5,5)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)

(0.5, 30)
(1, 30)
(2,30)
(3,30)
(4,30)
(5,30)

(10, 30)
(0.5, 60)

(1, 60)
(2,60)
(3,60)
(4,60)
(5,60)

(10, 60)

Ti
m

eo
ut

s

(b) F1-score

Figure 6.5: Performance evaluation of FL for distributed NIDS with different time-
outs on CIC-IDS2017 dataset.

fairly good performance enhancement within distributed NIDS with different time-

outs. Consequently, this outcome underscores the potential of FL and the need for

further in-depth investigations and studies of FL algorithms that consider different

NIDS with distinct characteristics resulting from different timeout configurations.

On a more holistic level, we conducted one last analysis leveraging results from

previous experiments. The main idea is to evaluate whether a specific timeout tuple

achieves better performance in comparison to the others. For each timeout tuple, we

performed a total number of 36 experiments: 1) the first set of experiments contains

12 measures for each timeout tuple (4 datasets and 3 models, see Tables 6.2, 6.3, 6.4,

and 6.5); 2) the second set of experiments consists of two main sets of experiments,

first 12 experiments for each timeout (4 datasets and 3 models, see Tables 6.2, 6.3, 6.4,

and 6.5) then 8 experiments which use one model with two different flow features

(4 datasets and 2 flow feature sets, see tables 6.10, 6.11, 6.12, and 6.13); 3) The last

evaluations performed 4 experiments for each timeout tuple (4 datasets, see Figure

93

6.4. Experiments and results

0.0 0.2 0.4 0.6 0.8 1.0

All
(0.5,2)

(1, 2)
(2,2)

(0.5,3)
(1,3)
(2, 3)
(3,3)

(0.5,4)
(1, 4)
(2,4)
(3,4)
(4,4)

(0.5,5)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)

(0.5, 30)
(1, 30)
(2,30)
(3,30)
(4,30)
(5,30)

(10, 30)
(0.5, 60)

(1, 60)
(2,60)
(3,60)
(4,60)
(5,60)

(10, 60)

Ti
m

eo
ut

s

(a) Accuracy

0.0 0.1 0.2 0.3 0.4 0.5

All
(0.5,2)

(1, 2)
(2,2)

(0.5,3)
(1,3)
(2, 3)
(3,3)

(0.5,4)
(1, 4)
(2,4)
(3,4)
(4,4)

(0.5,5)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)

(0.5, 30)
(1, 30)
(2,30)
(3,30)
(4,30)
(5,30)

(10, 30)
(0.5, 60)

(1, 60)
(2,60)
(3,60)
(4,60)
(5,60)

(10, 60)

Ti
m

eo
ut

s

(b) F1-score

Figure 6.6: Performance evaluation of FL for distributed NIDS with different time-
outs on UNSW-NB15 dataset.

0.0 0.2 0.4 0.6 0.8 1.0

All
(0.5,2)

(1, 2)
(2,2)

(0.5,3)
(1,3)
(2, 3)
(3,3)

(0.5,4)
(1, 4)
(2,4)
(3,4)
(4,4)

(0.5,5)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)

(0.5, 30)
(1, 30)
(2,30)
(3,30)
(4,30)
(5,30)

(10, 30)
(0.5, 60)

(1, 60)
(2,60)
(3,60)
(4,60)
(5,60)

(10, 60)

Ti
m

eo
ut

s

(a) Accuracy

0.0 0.2 0.4 0.6 0.8 1.0

All
(0.5,2)

(1, 2)
(2,2)

(0.5,3)
(1,3)
(2, 3)
(3,3)

(0.5,4)
(1, 4)
(2,4)
(3,4)
(4,4)

(0.5,5)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)

(0.5, 30)
(1, 30)
(2,30)
(3,30)
(4,30)
(5,30)

(10, 30)
(0.5, 60)

(1, 60)
(2,60)
(3,60)
(4,60)
(5,60)

(10, 60)

Ti
m

eo
ut

s

(b) F1-score

Figure 6.7: Performance evaluation of FL for distributed NIDS with different time-
outs on CUPID dataset.

6.4). This analysis is visually represented in the form of a boxplot illustrating the F1-

scores for various (Ta, Ti) combinations, as depicted in Figure 6.8. The latter shows

a minimal variance in model performance across the diverse timeout combinations

and no specific timeout setting appears to stand out as the clear choice for an initial

starting point. This finding underscores the complexity of selecting an ideal timeout

combination right from the outset.

In light of these results, it is evident that the choice of timeout can influence NIDS

ML models’ performance by as much as 17% (Table 6.7). On the one hand, the ETC

model is stable and scores better results when both the idle and active timeouts were

set to larger values. On the other hand, the MLP model is the most impacted by time-

out selection, this is important to notice given the current deep learning landscape.

Figure 6.8 provides an answer to RQ4 and shows that no one-size-fits-all timeout tu-

ple exists, and the choice depends on the environment of the application (dataset)

and the ML model. Consequently, incorporating a fine-tuning stage into the model

94

6.5. Summary

(0.5, 2) (1, 2) (2, 2) (0.5, 3) (1, 3) (2, 3) (3, 3) (0.5, 4) (1, 4) (2, 4) (3, 4) (4, 4) (0.5, 5) (1, 5) (2, 5) (3, 5) (4, 5) (5, 5)(0.5, 30)(1, 30) (2, 30) (3, 30) (4, 30) (5, 30)(10, 30)(0.5, 60)(1, 60) (2, 60) (3, 60) (4, 60) (5, 60)(10, 60)

0.5

0.6

0.7

0.8

0.9

Figure 6.8: Boxplot depicting F1-score variation of different timeouts considering all
preceding experiments.

development process mitigates the risk of settling for an inefficient timeout thereby

enhancing the overall effectiveness of the ML-based network intrusion detection.

6.5 Summary

The aim of this chapter was to shed light on the relationship between flow timeout

and the performance of ML models. Through extensive experimentation, we inves-

tigated the impact of varying the values of idle and active timeouts on the quality

of the extracted features and therefore on ML models used in the context of NIDS.

We utilized 32 combinations of idle and active timeouts to build 32 versions of each

NIDS dataset deployed in this study, namely, USTC-TFC2016, CIC-IDS2017, UNSW-

NB15, and CUPID. For each version, we train three ML models, ET, RF, and MLP

classifiers. Our findings demonstrate that adopting a one-size-fits-all approach to

timeouts can lead to suboptimal performance of ML models. Specifically, we found

that different combinations of idle and active timeouts had a substantial impact on

the accuracy and performance of the NIDS models, with a significant difference in

performance between the most effective timeout combination and the least effective.

Furthermore, the results indicated that the ETC and RFC models exhibit greater sta-

bility and resilience to fluctuations in idle and active timeouts compared to the MLP

model. Notably, ET classifier also exhibited superior performance when used with

longer timeouts. The study also revealed that extending the feature set reduces the

variance in models’ performance considering different timeouts. Through the ap-

95

6.5. Summary

plication of FL, we also demonstrate its promising potential in handling distributed

NIDS with diverse timeout configurations.

Our analysis has provided valuable insights into the impact of flow timeout on

the performance of NIDS, underscoring the need for network security professionals

and data scientists to pay meticulous attention to the selection and configuration of

idle and active timeouts when training ML models for NIDS.

96

7 Federated Learning for

Heterogeneous Systems

7.1 Introduction

FL has shown promise as an effective approach for improving the accuracy and ef-

ficiency of IDS in network security. However, FL is distinguished from traditional

distributed optimization methods by several key challenges. FL faces hurdles in nu-

merous applications, particularly in intrusion detection.

Communication overhead. A key limitation inherent in any FL application arises

from the associated communication costs during each training round [132]. FL op-

erates by exchanging model updates, first from the server to the selected clients and

then from each client back to the server. With more devices, large models, and con-

strained networks, the communication overhead increases significantly demanding

substantial bandwidth. Moreover, in scenarios where the participating devices have

diverse computational capacities, the synchronization of model updates becomes

more intricate. These challenges intensify with larger and more dynamic FL envi-

ronments. This issue has been addressed in the literature through the use of com-

pression techniques (such as quantization and sparsification) and the reduction of

the communication rounds [66]. However, this generally leads to a trade-off between

communication efficiency and model accuracy, as reducing the communication over-

head may result in loss of information, consequently compromising the effectiveness

of the intrusion detection model. In the context of intrusion detection, real-time anal-

ysis of network data is crucial, as well as fast and accurate detection. Hence, the

97

7.1. Introduction

efficiency and speed of communication become crucial. This becomes more challeng-

ing in large-scale networks with millions of connected devices. In such a case, even if

only 1% of clients are selected at each round, the communication of at least 10,000 up-

dates is performed, placing a heavy burden on the FL infrastructure and potentially

causing delays in model convergence.

Federated poisoning attacks. FL’s strength lies in distributed data, keeping infor-

mation secure and private. However, this decentralization shifts the target, creating

new security challenges for the devices that store and process this data locally, which

can become targets for malicious actors. Attackers inject manipulated data into the

training process, for instance by modifying the labels (label-flipping attack), conse-

quently biasing the global model and generating poisoned predictions. Another type

of poisoning attacks directly targets the model. Attackers tamper with the global

model, introducing subtle but harmful perturbations. Poisoned models can gener-

ate a wave of false alarms and misclassify legitimate threats or overlook real attacks,

leaving the network vulnerable [133]. One way to tackle this issue is to rely on net-

work management to guarantee that only devices adhering to the intended behavior

are permitted to take part in the training process [134]. However, these methods may

impose additional communication overhead. In their paper, Nguyen et al. [133] pro-

posed a poisoning attack for FL-based IDS, by manipulating the traffic data, show-

casing how subtle manipulations can create significant damage. Hence, the need for

robust defense mechanisms against federated poisoning attacks while preserving the

effectiveness of IDS is crucial.

Privacy concerns. FL emerged as a solution primarily aimed at alleviating the

privacy concerns associated with centralized ML models. However, despite these

privacy-centric intentions, it’s crucial to recognize that the privacy of participants’

data in FL is not completely guaranteed [135]. Several challenges contribute to this

uncertainty. The model weights encapsulate the features derived from each device’s

data, and may still contain sensitive information or patterns from the local data. The

process of exchanging these weights between the central server and individual de-

vices poses potential vulnerabilities. Attackers might analyze and decode the weights

to reconstruct sensitive features, possibly causing harm if misused. Furthermore, the

aggregation of model updates at the server introduces inherent risks. The server

gains access to information derived from the data on individual devices. If not prop-

erly secured, this aggregated information could become a target for a malicious server

98

7.2. Problem statement

or adversaries seeking to exploit vulnerabilities. Privacy-preserving techniques in-

cluding Differential Privacy (DP) [136], Secure-Multiparty Computation (SMC) [137],

and Homomorphic Encryption (HE) [138] are utilized to secure data submission. Re-

cent efforts are exploring the application of these techniques for IDS. For instance,

Li et al. [139] proposed the use of HE to secure the model’s updates exchange with

the server in a FL-based intrusion detection framework for Industrial Cyber-Physical

Systems. Another work [140] has explored the implementation of DP within an FL-

based IDS, with a specific focus on handling non-IID data. These methods, however,

often sacrifice accuracy and efficiency, potentially hurting the ability to detect attacks

in IDS. Therefore, further research is required to tackle these challenges and uphold

the initial promise of enhancing privacy while leveraging the power of collaborative

learning.

Data heterogeneity. Data heterogeneity, also known as non-IID data, is one of the

key challenges in FL [141], confining its adoption in real-world applications. Each

client in an FL setting might have data drawn from different domains, subject to spe-

cific biases, or influenced by unique user behaviors. This mismatch in data distribu-

tions leads to clients learning conflicting or irrelevant patterns, hindering the overall

model’s generalization. This is particularly evident in the context of IDS, where the

properties and characteristics of packets vary greatly based on many factors such

as time and usage. These variations in data characteristics across different clients

can lead to challenges in model training, aggregation, and generalization. Models

trained on non-IID data may struggle to generalize well across all clients, leading to

issues such as poor convergence, biased model parameters, and suboptimal predic-

tive performance. Dealing with non-IID data in FL requires specialized techniques

and algorithms that can adapt to the diversity and heterogeneity inherent in decen-

tralized data sources. To this end, numerous techniques have been proposed in the

literature which have been surveyed in [142]. In the next section, we address the chal-

lenge of non-IID data and its impact on the performance of DL models, in the specific

case when trained with BN layers.

7.2 Problem statement

Generally, non-IID data have not been an obstacle towards learning from distributed

data since data centers have access to the entire dataset and can distribute the data

according to IID assumption. However, in FL, the server does not have such a lux-

99

7.2. Problem statement

ury, as it does not have access to local client data. In real-world scenarios, each client

may correspond to an end device, a particular user, or a geographic location. Thus,

the data available locally are more likely to be dependent and non-identical. Each

partition has a different probability distribution that fails to represent the population

distribution. For example, data collected from mobile devices will reflect the pref-

erences of each user based on his age, location, gender, etc. Another example is the

deployment of IDS in a federated setting with heterogeneous systems that include,

for instance, health care centers, vehicular networks, smart cities, and cyber-physical

systems altogether. This may introduce unique challenges and opportunities due

to the diverse nature of the components and technologies involved. Heterogeneous

systems typically consist of a mix of different hardware architectures, operating sys-

tems, and network protocols, making them more resilient but also more complex.

Integrating IDS into such environments makes it challenging to learn a global model

that performs well on all client partitions. The difference in local distributions makes

learning from local data a challenging task due to the inconsistency between 1) the

results of the gradient algorithm executed locally on each client k that aims to mini-

mize a local objective function Fk(w) over mk samples and 2) the global objective of

minimizing the global function F(w) over all data samples
ř

k mk.

It is known that BN becomes ineffective in certain settings (small and non-IID

mini-batches [143]). On the one hand, BN relies on statistics computed from the mini-

batch, such as mean and variance, to normalize the inputs. In small mini-batches,

these statistics may not accurately represent the true distribution of the data, leading

to suboptimal normalization. When the mini-batch size is small, the computed mean

and variance may be noisy estimates of the true population statistics. This noise can

introduce variability in the normalization process, hindering BN’s effectiveness. In

extreme cases, small mini-batches might result in unstable training. On the other

hand, BN assumes that the samples in a mini-batch are drawn from the same dis-

tribution. In scenarios where the mini-batch contains diverse or non-representative

samples, BN may not effectively normalize the inputs. Non-IID mini-batches violate

the assumption of homogeneous data distribution within the batch. For example, if a

mini-batch contains samples from different classes or domains, the computed statis-

tics may not accurately capture the characteristics of any specific subset, leading to

normalization issues. In fact, if µB and σB diverge from the global mean and vari-

ance of the whole dataset, then the testing accuracy will be unsurprisingly low. In

FL settings, where each data partition could differ from the other, the performance

degradation is more severe as µB and σB vary significantly across partitions.

100

7.3. Preliminaries

7.3 Preliminaries

BN has become an indispensable technique in deep learning and it is one of the com-

ponents that has helped boosting ML applications in the last few years. In order to

stabilize and speed up neural network training, BN normalizes the input distribution

to have a mean of zero and a variance of one. BN acts differently between the training

and inference phases. During training, BN uses mini-batch means and variances for

normalization. In fact, for each mini-batch B, BN first computes the mean µB and the

variance σB, and then normalizes each input xi in B as follows:

x̂i =
xi ´ µB

b

σ2
B + ϵ

where ϵ is a small constant added for numerical stability. Further, BN adds two learn-

able parameters, namely the γ coefficient and the β bias, to automatically scale and

shift the normalized pre-activations. In other words, these parameters allow the net-

work to convert the mean and variance to their optimal values:

yi = γx̂i + β

At the inference time, as each sample is processed separately, computing the mini-

batch mean and variance is infeasible. Thus, during the training, we estimate the

mean and variance over the whole dataset as follows:

E =
1
m

j
ÿ

i=1

µ
(i)
B Var = (

m
m ´ 1

)
1
m

j
ÿ

i=1

σ2(i)
B

where m is the mini-batch size and j is the total number of mini-batches. These esti-

mated values are then used at the inference time as follows:

y =
γ

?
Var + ϵ

x + (β +
γE

?
Var + ϵ

)

7.4 Methodology

In the case of FL with IID settings, training neural networks with BN layers does not

pose any problem since each local data is drawn from the global distribution, and

therefore the mini-batch statistics (µ and σ2) are representative of the whole dataset

statistics. However, in non-IID setting, the statistics calculated by each client are

biased to its local data and vary across clients.

In spite of previously discussed alternatives showing some promising results

which helped maintain the performance of BN in a few cases [144], they come with

101

7.4. Methodology

some side effects. For instance, when using GN, one should be careful with the batch

size as the performance of GN degrades with larger batch sizes. Furthermore, Fixup

Resnet is limited to Resnets and also requires a carefully-tuned learning rate strategy.

Thus, the aforementioned conclusions are more nuanced than previously thought

,hence, more thorough studies and experimentation are needed before concluding

if any of these methods can replace BN for different applications and CNN/DNN

models.

To address the problem of BN in FL under non-IID data, we proposed FedBS, a

new aggregation strategy that handles batch parameters in FL during training to im-

prove the models’ performance against heterogeneity. FedBS assumes that the global

model used in FL has BN layers, and modifies the aggregation strategy at the server

side.

In their paper , Y. J. Cho et. al [75] analyze the convergence of FedAvg under

biased selection strategies and prove that biasing sampling procedure of participating

clients towards those with higher loss helps with convergence time as well as higher

accuracy. Based on the conclusions drawn from Y. J. Cho et. al analysis, we propose

a modification to the naive approach of weighting local models in FedAvg. FedAvg

uses an unbiased selection strategy for clients, where the clients are chosen randomly

and their weights are computed based on their local data size. This strategy fails in

cases from which we mention when a client has a large data drawn from one class

and/or contains outliers. FedBS modifies FedAvg in two major steps. First, in the

early rounds where Fk(w) highly differs from a client to another, FedBS weighs the

clients according to their respective loss during training. Specifically, the higher the

loss of a local model the higher shall be the respective weight of the corresponding

client in the aggregation step. This step helps to warm up the global model. When all

clients start to converge to the global model and Fk(w) is stable between clients we

switch the training using equal weights for all clients and using FedProx algorithm.

We check the stability of Fk(w) by computing the standard deviation of the loss vector

of the partaking clients, if std(v) ď ϵ for r consecutive rounds, then we continue the

training with FedProx algorithm and using equal weight for all clients (ϵ = 0.1 and

r = 5 for experimentation) (Algorithm 3).

Figure 7.1 provides a global overview for the first step ofFedBS (without the

weight exchange of the global model):

1. At each communication round, a subset k of clients is chosen randomly to par-

ticipate in the current FL round. Each participating client after training on his

102

7.5. Experiments and results

Figure 7.1: Overview of FedBS

local data, shares the BN parameters used in the normalization layers with the

central server, as well as the loss value obtained in the current round.

2. The server, based on the local loss values, calculates the importance of each

client, i.e. higher weight is given to the client with the highest local loss. Then

aggregates all the local models.

3. The updated parameters are sent back to the newly selected clients for the next

round. Each client updates both training and inference statistics based on those

received from the server

7.5 Experiments and results

Datasets and non-IID settings We conduct our experiments on three datasets,

Mnist, Fashion-Mnist and Cifar-10. For Cifar-10 [145] dataset, We use a CNN model

with four convolution layers, a first 5x5 convolution layer followed by three 3x3 con-

volution layers, with 100, 150, 250, 500 channels respectively. Each convolution layer

is followed by a normalization layer, a Relu activation, and a 2x2 max pooling. In

the end, three fully connected layers were used (with 4500, 270, 150 units resp.). For

Mnist [146] and Fashion-Mnist [147], we use a CNN model with two 5x5 convolu-

tion layers, the first one with 16 channels, the second one with 32. Each convolution

is followed with a BN layer, ReLu activation, and a 2x2 max pooling, then a fully

connected layer with 1568 units.

We consider two distributions, for non-IID Data partitions. The first is balanced

label distribution skew [72] where the Mnist dataset is divided into 200 shards of 300

images. We consider 100 clients, each receives two shards, and thus has samples from

only two classes. The same setting is used to partition Fashion-Mnist and Cifar-10.

The second is unbalanced label distribution skew, where we divide the datasets into 1200

103

7.5. Experiments and results

Algorithm 3 FedBS: The K clients are indexed by k, E is the number of local epochs, B
is a set of mini-batches each of size m, η is the learning rate, and ϵ is a positive small
number.

Server executes:
initialize w0
for each round t = 0, 1, . . . do

m Ð max(CˆK, 1)
St Ð (select a random set of m clients)
send wt to each client k P St
for each client k P St do

wk,t+1, Fk(w) Ð ClientUpdate(k, wt)
end for
Wk =

Fk(w)
ř

kPSt
Fk(w)

wt+1 =
ř

kPSt
Wkwk

t+1
until std(F(w)) ă ϵ
switch to FedProx

end for

ClientUpdate(k, w):
for each i from 1 to E do

for batch b P B do
w Ð w ´ η∇L(w; b)
computer Fk(w)

end for
end for
return w and Fk(w) to server

shards of 50 samples each. Each client receives at least one shard and a maximum of

30 shards.

Baselines. We compare the proposed method FedBS to two standard algorithms in

FL, FedAvg and FedProx. We also include the recently proposed method FedBN. Since

FedBN does not deal with our setting of testing where the testing clients do not have

any data to calculate the mean and variance on, we handle this by taking the average

of the mean and the variance learned in the previous round as was done with the

trainable parameters in the proposed generalization of FedBN.

Training. For all datasets, we divide the samples on 100 clients either evenly or

unequally. For each communication round, 10 clients are chosen randomly to par-

ticipate in the FL round. During training, we set batch size B to 10, learning rate r

to 0.01, local epochs E to 10, and global rounds to 250 for Balanced and unbalanced

104

7.5. Experiments and results

0 100 200 300 400 500

Communication Rounds
68

69

70

71

72

73

74

75

76

77

Te
st

 a
cc

ur
ac

y
(%

)

FedBS
FedProx
FedAvg
FedBN

300 325 350 375 400 425 450 475 500

75.6

75.8

76.0

76.2

76.4

Figure 7.2: Testing results on Cifar-10 dataset partitioned unequally.

Mnist/Fashion-Mnist and 1000, 500 for Balanced and Unbalanced Cifar-10 respec-

tively. We use SGD optimizer with cross-entropy loss function. For BN hyperparam-

eters, we use the default values 0.1 for momentum and ema as the moving average

technique.

Evaluation. We evaluate FedBS on the original test datasets as our general test sets,

each containing 10000 samples. For each method, we run the training and test five

times and we plot the mean result.

Discussion. Figure 7.2 and 7.3 provide the testing accuracy on Cifar-10 dataset in

both cases equal and unequal partitioning of the data respectively. We observe that

FedBS yields up to 2ˆ faster convergence rate with higher test accuracy. We notice

that FedBN is slower than all other methods including FedAvg. Moreover, compared

to the baselines, FedBS goes smoother with less fluctuations for both cases. Similarly,

we run tests on Mnist and Fashion-Mnist datasets (Figure 7.4 and 7.5). For both

scenarios, equal and unequal partitioning of the data, FedBS is on par or better than

other FL methods.

Testing on unbalanced Cifar-10 dataset locally. We also tested FedBS in the local

case where clients have access to all BN parameters (Figure 7.6). Although FedBN

surpasses the other methods, however, it goes much slower than all of them during

the first 200 rounds, which supports the remarks previously made about the slowness

105

7.6. Summary

of FedBN. On the other hand, FedBS, FedAvg, and FedProx all converge to the same

accuracy, however, FedBS shows faster convergence during earlier rounds.

0 200 400 600 800 1000

Communication Rounds

56

58

60

62

64

66

68

70

Te
st

 a
cc

ur
ac

y
(%

)

FedBS
FedProx
FedAvg
FedBN

600 650 700 750 800 850 900 950 1000
66.0

66.5

67.0

67.5

68.0

68.5

Figure 7.3: Testing results on Cifar-10 dataset partitioned equally.

Equal Unequal0

20

40

60

80

100

Te
st

 a
cc

ur
ac

y
(%

)

98.22 99.0598.20 99.0098.08 98.9697.95 98.83

FedBS FedAvg FedProx FedBN

Figure 7.4: Testing results on balanced Mnist and Fashion-Mnist datasets.

7.6 Summary

This chapter introduced a novel approach, called FedBS, for handling DNN models

with normalization layers in the FL setting. In order to deal with the non-IIDness

assumption, FedBS warms up the global model by weighting the local models based

106

7.6. Summary

Equal Unequal0

20

40

60

80

100

Te
st

 a
cc

ur
ac

y
(%

)

98.15 99.0698.11 99.0298.11 98.9798.15 98.82

FedBS FedAvg FedProx FedBN

Figure 7.5: Experiments results on unbalanced Mnist and Fashion-Mnist datasets.

0 100 200 300 400 500

Communication Rounds
20

30

40

50

60

70

Tes
t ac

cur
acy

 (%
)

FedBS
FedProx
FedAvg
FedBN

Figure 7.6: Testing results on Cifar-10 dataset partitioned unequally (Local test).

on each client’s loss value, then FedBS switches to equal weighting with FedProx algo-

rithm. We have comparatively evaluated FedBS against FedAvg, FedProx and FedBN

using a multitude of datasets under various non-IID settings. First, based on exhaus-

tive experimentation conducted on the known and complex dataset Cifar-10, FedBS

outperformed all the state-of-the-art approaches in terms of both convergence rate

and model performance with a scale up 2ˆ faster. Furthermore, throughout all ex-

periments run on Mnist and Fashion-Mnist datasets, FedBS was either on par or better

than the concurrent methods. Finally, since batch statistics can be used by potential

attackers, and as future directions we intend to propose a more secure communica-

tion of batch parameters between the clients and the server.

107

8 Conclusion and Future

Work

In this concluding chapter, we summarize our contributions to IDS and FL fields,

discuss the major findings of this thesis, highlight the inherent limitations of the pro-

posed approaches, and conclude by providing an outlook on potential future research

directions.

8.1 Summary

The concept of IDS has been around for more than four decades. However, it has only

recently exploded onto the scene, becoming a cornerstone of modern network secu-

rity. This is due to the increasing number and sophistication of attacks on computer

networks. The thing that made firewalls and antiviruses insufficient to secure net-

works. The inadequacy of these passive measures has paved the way for the elevated

role of IDS, which have now become an indispensable component for organizations,

working side by side with firewalls and antiviruses, filling the gap left by them. In

this thesis, we have identified and addressed three research problems in network in-

trusion detection: (i) the concerns associated with centralized approaches for NIDS,

(ii) the relationship between the quality of network features and the performance of

ML and DL models, and (iii) the problem of non-IID data in heterogeneous systems.

An efficient IDS should provide high detection accuracy of known and unknown

threats, timely alerts, and minimal false alarms. Many works have focused on im-

proving the performance of IDS through AI techniques, such as ML/DL algorithms

108

8.1. Summary

and anomaly detection methods. However, most of these approaches rely on central-

ized data collection and processing, often overlooking the inherent challenges and

risks such as data privacy. The first contribution of this dissertation tackled this chal-

lenge. We proposed Fed-ANIDS, an innovative approach that combines FL and au-

toencoders for intrusion detection in distributed networks. It addresses the need for

both privacy preservation and robust intrusion detection. The autoencoders learn

representations of normal data behavior while FL ensures privacy by training mod-

els locally on client subsets. Leveraging both FL and autoencoders allows for efficient

training on diverse and potentially high-dimensional network data while preserving

privacy. At the detection phase, any deviation from normal behavior is marked as an

attack. Fed-ANIDS demonstrated its effectiveness on three publicly available datasets

(USTC-TFC2016, CIC-IDS2017, and CSE-CIC-IDS2018), achieving high accuracy, low

false alarms, and outperforming GAN-based models. Moreover, The chosen FL al-

gorithm FedProx, consistently matches or surpasses the popular FedAvg in terms of

performance. These results highlight the potential of using autoencoders for large-

scale intrusion detection in distributed systems and pave the way to explore other FL

algorithms.

The performance of ML/DL models is greatly influenced by the datasets they

are trained on. However, researchers often concentrate on enhancing model perfor-

mance, neglecting the critical role played by the quality of the training datasets and

its impact on the overall performance. We studied the critical relationship between

flow timeout settings, the quality of the extracted features, and the performance of

ML/DL models used in NIDS. Through extensive experiments, we investigated how

different idle and active timeout values affect the quality of extracted features and,

consequently, the performance of ML/DL models for intrusion detection. The key

findings are: 1) A one-size-fits-all approach to timeouts is ineffective. Different com-

binations of idle and active timeouts significantly impact the accuracy and perfor-

mance of NIDS models. 2) ML models vary in their sensitivity to timeouts. Some

models are more resilient to timeout fluctuations compared to others. 3) Feature

engineering plays a key role in robustness. Expanding the feature set reduces per-

formance variance and helps stabilize model performance across different timeout

configurations. 4) FL holds promise for ditributed NIDS with varying timeouts. Ap-

plying FL demonstrated its potential to handle distributed NIDS with varying time-

out settings.

FL allows training models across multiple devices without sharing raw data, but

issues arise when data distributions across devices differ (non-IID setting). We intro-

109

8.2. Research gaps and future work

duced FedBS, a novel approach that tackles challenges associated with training DNNs

with normalization layers in FL settings. Before averaging updates, FedBS weights lo-

cal models based on their loss values, focusing on those performing well with their

specific data. After the initial "warm-up", FedBS switches to the FedProx algorithm

with equal weighting for all clients, ensuring stability and convergence. The authors

compared FedBS against state-of-the-art FL methods like FedAvg, FedProx, and FedBN

on various datasets and non-IID conditions. In most cases, FedBS excels, converging

2x faster and achieving superior model performance. In other cases, FedBS consis-

tently matched or surpassed competing methods.

8.2 Research gaps and future work

Although we have made great strides in trying to solve the research problems stated

above, we have been faced with other open problems:

• Generalization: Generalization is a common issue in FL. The generalization

issue in FL refers to the difficulty of models trained on data from multiple de-

vices/clients to perform well on unseen data, which can come from two sce-

narios: 1) New data within known domains: When the model encounters new

data points from the same type of devices and environments it was trained on,

but not specifically included in the training set. 2) Unseen domains: When the

model faces data from entirely new devices, environments, or data distributions

it has never seen before. This issue arises due to the inherent heterogeneity of

data in FL settings, leading to reduced accuracy and biased decisions. We have

evaluated how well Fed-ANIDS adapts to unseen data, highlighting the two

previously mentioned scenarios: 1) New data from known domains: The au-

toencoder was trained on two datasets, leaving the third unseen. Even within

these familiar domains, Fed-ANIDS performance dropped when tested on new

data. 2) Completely unseen domains: The model was never exposed to the third

dataset during training. As expected, performance suffered even more signifi-

cantly in this scenario. Nevertheless, it is important to highlight that in certain

instances, the model exhibited superior performance on an unseen dataset com-

pared to a dataset used for training, and vice versa. Moreover, in another case,

the model could not generalize either on the unseen dataset or on the one used

for training but performed well on the second dataset used during training.

We have explained these observations by the size of the datasets. The model is

110

8.2. Research gaps and future work

biased to the largest datasets whether they have been used for training or left

unseen for evaluation.

• Limitations of existing IDS datasets for FL As previously discussed in 2.5, the

majority of existing IDS datasets have major issues related to data collection,

labeling, and feature extraction. These issues exacerbate in FL environments,

making most of these datasets unsuitable for deployment. First, many IDS

datasets lack information related to various IP addresses or devices, making

it unfeasible to identify the entities within the FL system. Consequently, this

hinders the ability to design a realistic FL scenario. Second, the curse of class

imbalance reaches even IDS datasets [34]. Most of these exhibit a notable im-

balance between benign and attack traffic, generally encompassing a restricted

number and range of attacks. Various approaches have been proposed to al-

leviate the impact of the imbalance problem. One work [148] proposed the

use of the Synthetic Minority Oversampling Technique (SMOTE) technique to

handle the class imbalance issue in the CIC-IDS2018 dataset. Another paper

[149] incorporated under-sampling and embedded feature selection in the data

preprocessing phase to relieve the issue of class imbalance in the CIC-IDS2018

dataset. Despite these endeavors, there is a need for further research to build

clean and realistic datasets specifically tailored for application in decentralized

settings.

• Intrusion detection on non-IID data As demonstrated in the second contri-

bution, network flows can be extracted using different parameters including

flow timeout, resulting in distinct sets of features and datasets. Our empir-

ical analysis has highlighted the significant influence of these parameters on

the performance of ML/DL models. Consequently, in practical FL scenarios,

individual devices or clients may possess datasets generated with varying pa-

rameters, thus producing datasets that deviate from the IID assumption. This

observation underscores the importance of considering data heterogeneity in

FL-based solutions for intrusion detection. Therefore, it is essential to develop

FL algorithms and methodologies capable of accommodating and mitigating

the impact of data heterogeneity in IDS, ensuring robust performance in real-

world FL deployments.

For future work, we plan to address the aforementioned research gaps. Further

research and evaluations of FL-based IDS models with a focus on domain general-

111

8.2. Research gaps and future work

ization in order to improve their performance across different network domains and

achieve better intrusion detection accuracy overall. Moreover, other FL algorithms

should be explored and tested for this purpose. Furthermore,

Another direction is to further examine the impact of timeouts on different net-

work security systems (NSM, Security information and event management (SIEM),

etc.). In addition, we plan to explore heterogeneous FL algorithms to enhance the

performance of ML/DL-based NIDS when different configurations of timeouts are

used.

112

Bibliography

[1] Marshall A Kuypers, Thomas Maillart, and Elisabeth Paté-Cornell. “An em-

pirical analysis of cyber security incidents at a large organization. Department

of Management Science and Engineering”. In: Stanford University, School of

Information, UC Berkeley, http://fsi. stanford. edu/sites/default/files/kuypersweis_v7.

pdf, accessed July 30 (2016), pp. 1–22.

[2] Eric Cole. Network security bible. John Wiley & Sons, 2011.

[3] Brian Caswell and Jay Beale. Snort 2.1 intrusion detection. Elsevier, 2004.

[4] Wonhyung Park and Seongjin Ahn. “Performance comparison and detection

analysis in snort and suricata environment”. In: Wireless Personal Communica-

tions 94.2 (2017), pp. 241–252.

[5] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and E. Vázquez.

“Anomaly-based network intrusion detection: Techniques, systems and chal-

lenges”. In: Computers & Security 28.1 (2009), pp. 18–28. ISSN: 0167-4048.

DOI: https : / / doi . org / 10 . 1016 / j . cose . 2008 . 08 . 003. URL:

https : / / www . sciencedirect . com / science / article / pii /

S0167404808000692.

[6] Jiong Zhang and Mohammad Zulkernine. “Anomaly Based Network Intru-

sion Detection with Unsupervised Outlier Detection”. In: 2006 IEEE Inter-

national Conference on Communications. Vol. 5. 2006, pp. 2388–2393. DOI: 10.

1109/ICC.2006.255127.

113

Bibliography

[7] Zhen Yang, Xiaodong Liu, Tong Li, Di Wu, Jinjiang Wang, Yunwei Zhao,

and Han Han. “A systematic literature review of methods and datasets for

anomaly-based network intrusion detection”. In: Computers & Security 116

(2022), p. 102675. ISSN: 0167-4048. DOI: https://doi.org/10.1016/

j.cose.2022.102675. URL: https://www.sciencedirect.com/

science/article/pii/S0167404822000736.

[8] Robert M Lee. “2020 SANS Cyber Threat Intelligence (CTI) Survey”. In: (2020).

[9] Haiguang Lai, Shengwen Cai, Hao Huang, Junyuan Xie, and Hui Li. “A Paral-

lel Intrusion Detection System for High-Speed Networks”. In: Applied Cryptog-

raphy and Network Security. Ed. by Markus Jakobsson, Moti Yung, and Jianying

Zhou. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 439–451. ISBN:

978-3-540-24852-1.

[10] Ming Gao, Kenong Zhang, and Jiahua Lu. “Efficient packet matching for gi-

gabit network intrusion detection using TCAMs”. In: 20th International Confer-

ence on Advanced Information Networking and Applications - Volume 1 (AINA’06).

Vol. 1. 2006, 6 pp.–254. DOI: 10.1109/AINA.2006.164.

[11] Muhammad Fahad Umer, Muhammad Sher, and Yaxin Bi. “Flow-based intru-

sion detection: Techniques and challenges”. In: Computers & Security 70 (2017),

pp. 238–254. ISSN: 0167-4048. DOI: https://doi.org/10.1016/j.cose.

2017.05.009. URL: https://www.sciencedirect.com/science/

article/pii/S0167404817301165.

[12] Zied Aouini and Adrian Pekar. “NFStream: A flexible network data anal-

ysis framework”. In: Computer Networks 204 (2022), p. 108719. ISSN: 1389-

1286. DOI: https://doi.org/10.1016/j.comnet.2021.108719.

URL: https://www.sciencedirect.com/science/article/pii/

S1389128621005739.

[13] Anna Sperotto, Gregor Schaffrath, Ramin Sadre, Cristian Morariu, Aiko Pras,

and Burkhard Stiller. “An Overview of IP Flow-Based Intrusion Detection”.

In: IEEE Communications Surveys & Tutorials 12.3 (2010), pp. 343–356. DOI: 10.

1109/SURV.2010.032210.00054.

[14] Hongyu Liu and Bo Lang. “Machine Learning and Deep Learning Methods

for Intrusion Detection Systems: A Survey”. In: Applied Sciences 9.20 (2019).

ISSN: 2076-3417. DOI: 10.3390/app9204396. URL: https://www.mdpi.

com/2076-3417/9/20/4396.

114

Bibliography

[15] Sultan Zavrak and Murat İskefiyeli. “Anomaly-Based Intrusion Detection

From Network Flow Features Using Variational Autoencoder”. In: IEEE Ac-

cess 8 (2020), pp. 108346–108358. DOI: 10.1109/ACCESS.2020.3001350.

[16] Fahimeh Farahnakian and Jukka Heikkonen. “A deep auto-encoder based ap-

proach for intrusion detection system”. In: 2018 20th International Conference

on Advanced Communication Technology (ICACT). 2018, pp. 178–183. DOI: 10.

23919/ICACT.2018.8323688.

[17] Lukas Budach, Moritz Feuerpfeil, Nina Ihde, Andrea Nathansen, Nele Noack,

Hendrik Patzlaff, Felix Naumann, and Hazar Harmouch. The Effects of Data

Quality on Machine Learning Performance. 2022. arXiv: 2207.14529 [cs.DB].

[18] Inês Martins, João S. Resende, Patrícia R. Sousa, Simão Silva, Luís Antunes,

and João Gama. “Host-based IDS: A review and open issues of an anomaly

detection system in IoT”. In: Future Generation Computer Systems 133 (2022),

pp. 95–113. ISSN: 0167-739X. DOI: https : / / doi . org / 10 . 1016 / j .

future.2022.03.001. URL: https://www.sciencedirect.com/

science/article/pii/S0167739X22000760.

[19] Satish Kumar, Sunanda Gupta, and Sakshi Arora. “Research Trends in

Network-Based Intrusion Detection Systems: A Review”. In: IEEE Access 9

(2021), pp. 157761–157779. DOI: 10.1109/ACCESS.2021.3129775.

[20] D. Mangla and H. Gupta. “Application based intrusion detection system”. In:

9 (Jan. 2016), pp. 391–397.

[21] Tamer AbuHmed, Abedelaziz Mohaisen, and DaeHun Nyang. “A survey on

deep packet inspection for intrusion detection systems”. In: arXiv preprint

arXiv:0803.0037 (2008).

[22] Holger Dreger, Anja Feldmann, Vern Paxson, and Robin Sommer. “Opera-

tional experiences with high-volume network intrusion detection”. In: Pro-

ceedings of the 11th ACM conference on Computer and communications security.

2004, pp. 2–11.

[23] Robert Koch. “Towards next-generation Intrusion Detection”. In: 2011 3rd In-

ternational Conference on Cyber Conflict. 2011, pp. 1–18.

[24] Benoit Claise, Brian Trammell, and Paul Aitken. Specification of the IP flow in-

formation export (IPFIX) protocol for the exchange of flow information. Tech. rep.

2013.

115

Bibliography

[25] Benoit Claise. Cisco systems netflow services export version 9. Tech. rep. 2004.

[26] Simon Leinen. Evaluation of candidate protocols for IP flow information export (IP-

FIX). Tech. rep. 2004.

[27] Markus Ring, Sarah Wunderlich, Deniz Scheuring, Dieter Landes, and An-

dreas Hotho. “A survey of network-based intrusion detection data sets”. In:

Computers & Security 86 (2019), pp. 147–167. ISSN: 0167-4048. DOI: https:

//doi.org/10.1016/j.cose.2019.06.005. URL: https://www.

sciencedirect.com/science/article/pii/S016740481930118X.

[28] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Y. Sheng. “Malware

traffic classification using convolutional neural network for representation

learning”. In: Jan. 2017, pp. 712–717. DOI: 10.1109/ICOIN.2017.7899588.

[29] Iman Sharafaldin, Arash Habibi Lashkari, and Ali Ghorbani. “Toward Gener-

ating a New Intrusion Detection Dataset and Intrusion Traffic Characteriza-

tion”. In: Jan. 2018, pp. 108–116. DOI: 10.5220/0006639801080116.

[30] Nour Moustafa and Jill Slay. “UNSW-NB15: a comprehensive data set for net-

work intrusion detection systems (UNSW-NB15 network data set)”. In: 2015

Military Communications and Information Systems Conference (MilCIS). 2015,

pp. 1–6. DOI: 10.1109/MilCIS.2015.7348942.

[31] Heather Lawrence, Uchenna Ezeobi, Orly Tauil, Jacob Nosal, Owen Redwood,

Yanyan Zhuang, and Gedare Bloom. “CUPID: A labeled dataset with Pentest-

ing for evaluation of network intrusion detection”. In: Journal of Systems Ar-

chitecture 129 (2022), p. 102621.

[32] Hanan Hindy, David Brosset, Ethan Bayne, Amar Kumar Seeam, Christos

Tachtatzis, Robert Atkinson, and Xavier Bellekens. “A Taxonomy of Network

Threats and the Effect of Current Datasets on Intrusion Detection Systems”.

In: IEEE Access 8 (2020), pp. 104650–104675. DOI: 10.1109/ACCESS.2020.

3000179.

[33] Mohanad Sarhan, Siamak Layeghy, Nour Moustafa, and Marius Portmann.

“NetFlow Datasets for Machine Learning-Based Network Intrusion Detection

Systems”. In: Big Data Technologies and Applications. Ed. by Zeng Deze, Huan

Huang, Rui Hou, Seungmin Rho, and Naveen Chilamkurti. Cham: Springer

International Publishing, 2021, pp. 117–135. ISBN: 978-3-030-72802-1.

116

Bibliography

[34] Gints Engelen, Vera Rimmer, and Wouter Joosen. “Troubleshooting an Intru-

sion Detection Dataset: the CICIDS2017 Case Study”. In: 2021 IEEE Security

and Privacy Workshops (SPW). 2021, pp. 7–12. DOI: 10.1109/SPW53761.

2021.00009.

[35] Lisa Liu, Gints Engelen, Timothy Lynar, Daryl Essam, and Wouter Joosen. “Er-

ror Prevalence in NIDS datasets: A Case Study on CIC-IDS-2017 and CSE-CIC-

IDS-2018”. In: 2022 IEEE Conference on Communications and Network Security

(CNS). 2022, pp. 254–262. DOI: 10.1109/CNS56114.2022.9947235.

[36] Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-

tion Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. ISBN:

0387310738.

[37] Mohamed Alloghani, Dhiya Al-Jumeily, Jamila Mustafina, Abir Hussain, and

Ahmed J. Aljaaf. “A Systematic Review on Supervised and Unsupervised Ma-

chine Learning Algorithms for Data Science”. In: Supervised and Unsupervised

Learning for Data Science. Ed. by Michael W. Berry, Azlinah Mohamed, and

Bee Wah Yap. Cham: Springer International Publishing, 2020, pp. 3–21. ISBN:

978-3-030-22475-2. DOI: 10.1007/978-3-030-22475-2_1. URL: https:

//doi.org/10.1007/978-3-030-22475-2_1.

[38] Jesper E Van Engelen and Holger H Hoos. “A survey on semi-supervised

learning”. In: Machine learning 109.2 (2020), pp. 373–440.

[39] Yanwen Chong, Yun Ding, Qing Yan, and Shaoming Pan. “Graph-based semi-

supervised learning: A review”. In: Neurocomputing 408 (2020), pp. 216–230.

ISSN: 0925-2312. DOI: https://doi.org/10.1016/j.neucom.2019.

12.130. URL: https://www.sciencedirect.com/science/article/

pii/S0925231220304938.

[40] Ningxin Shi, Xiaohong Yuan, Joaquin Hernandez, Kaushik Roy, and Albert

Esterline. “Self-Learning Semi-Supervised Machine Learning for Network

Intrusion Detection”. In: 2018 International Conference on Computational Sci-

ence and Computational Intelligence (CSCI). 2018, pp. 59–64. DOI: 10.1109/

CSCI46756.2018.00019.

[41] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max

Welling. “Semi-supervised Learning with Deep Generative Models”. In: Ad-

vances in Neural Information Processing Systems. Ed. by Z. Ghahramani, M.

Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger. Vol. 27. Curran As-

117

Bibliography

sociates, Inc., 2014. URL: https://proceedings.neurips.cc/paper_

files/paper/2014/file/d523773c6b194f37b938d340d5d02232-

Paper.pdf.

[42] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine learning

8 (1992), pp. 279–292.

[43] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin A. Riedmiller. “Playing Atari with

Deep Reinforcement Learning”. In: CoRR abs/1312.5602 (2013). arXiv: 1312.

5602. URL: http://arxiv.org/abs/1312.5602.

[44] Peter J. Rousseeuw. “Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis”. In: Journal of Computational and Applied Mathe-

matics 20 (1987), pp. 53–65. ISSN: 0377-0427. DOI: https://doi.org/10.

1016/0377-0427(87)90125-7. URL: https://www.sciencedirect.

com/science/article/pii/0377042787901257.

[45] David L. Davies and Donald W. Bouldin. “A Cluster Separation Measure”. In:

IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-1.2 (1979),

pp. 224–227. DOI: 10.1109/TPAMI.1979.4766909.

[46] Leo Breiman. “Random forests”. In: Machine learning 45 (2001), pp. 5–32.

[47] Pierre Geurts, Damien Ernst, and Louis Wehenkel. “Extremely randomized

trees”. In: Machine learning 63 (2006), pp. 3–42.

[48] Junyi Chai, Hao Zeng, Anming Li, and Eric W.T. Ngai. “Deep learning in

computer vision: A critical review of emerging techniques and application

scenarios”. In: Machine Learning with Applications 6 (2021), p. 100134. ISSN:

2666-8270. DOI: https://doi.org/10.1016/j.mlwa.2021.100134.

URL: https://www.sciencedirect.com/science/article/pii/

S2666827021000670.

[49] Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita. “A Survey of the Us-

ages of Deep Learning for Natural Language Processing”. In: IEEE Transac-

tions on Neural Networks and Learning Systems 32.2 (2021), pp. 604–624. DOI:

10.1109/TNNLS.2020.2979670.

[50] Fionn Murtagh. “Multilayer perceptrons for classification and regression”.

In: Neurocomputing 2.5 (1991), pp. 183–197. ISSN: 0925-2312. DOI: https://

doi.org/10.1016/0925-2312(91)90023-5. URL: https://www.

sciencedirect.com/science/article/pii/0925231291900235.

118

Bibliography

[51] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Re-

stricted Boltzmann Machines”. In: Proceedings of the 27th International Con-

ference on International Conference on Machine Learning. ICML’10. Haifa, Israel:

Omnipress, 2010, pp. 807–814. ISBN: 9781605589077.

[52] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rectifier

Neural Networks”. In: Proceedings of the Fourteenth International Conference on

Artificial Intelligence and Statistics. Ed. by Geoffrey Gordon, David Dunson,

and Miroslav Dudík. Vol. 15. Proceedings of Machine Learning Research.

Fort Lauderdale, FL, USA: PMLR, Nov. 2011, pp. 315–323. URL: https://

proceedings.mlr.press/v15/glorot11a.html.

[53] Pierre Baldi. “Autoencoders, Unsupervised Learning, and Deep Architec-

tures”. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learn-

ing. Ed. by Isabelle Guyon, Gideon Dror, Vincent Lemaire, Graham Tay-

lor, and Daniel Silver. Vol. 27. Proceedings of Machine Learning Research.

Bellevue, Washington, USA: PMLR, Feb. 2012, pp. 37–49. URL: https://

proceedings.mlr.press/v27/baldi12a.html.

[54] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. 2020. DOI: 10.

48550/ARXIV.2003.05991. URL: https://arxiv.org/abs/2003.

05991.

[55] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In:

2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,

Canada, April 14-16, 2014, Conference Track Proceedings. Ed. by Yoshua Bengio

and Yann LeCun. 2014. URL: http://arxiv.org/abs/1312.6114.

[56] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian J. Goodfellow.

“Adversarial Autoencoders”. In: CoRR abs/1511.05644 (2015). arXiv: 1511.

05644. URL: http://arxiv.org/abs/1511.05644.

[57] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. “Generative

Adversarial Nets”. In: Advances in Neural Information Processing Systems 27:

Annual Conference on Neural Information Processing Systems 2014, December 8-

13 2014, Montreal, Quebec, Canada. Ed. by Zoubin Ghahramani, Max Welling,

Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger. 2014, pp. 2672–

2680. URL: https://proceedings.neurips.cc/paper/2014/hash/

5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html.

119

Bibliography

[58] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise

Aguera y Arcas. “Communication-Efficient Learning of Deep Networks from

Decentralized Data”. In: Proceedings of the 20th International Conference on Arti-

ficial Intelligence and Statistics. Ed. by Aarti Singh and Jerry Zhu. Vol. 54. Pro-

ceedings of Machine Learning Research. PMLR, 20–22 Apr 2017, pp. 1273–

1282. URL: https://proceedings.mlr.press/v54/mcmahan17a.

html.

[59] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. “Federated Machine

Learning: Concept and Applications”. In: ACM Trans. Intell. Syst. Technol. 10.2

(Jan. 2019). ISSN: 2157-6904. DOI: 10.1145/3298981. URL: https://doi.

org/10.1145/3298981.

[60] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang.

On the Convergence of FedAvg on Non-IID Data. 2019. arXiv: 1907 . 02189

[stat.ML].

[61] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Tal-

walkar, and Virginia Smith. “Federated Optimization in Heterogeneous

Networks”. In: Proceedings of Machine Learning and Systems. Ed. by I.

Dhillon, D. Papailiopoulos, and V. Sze. Vol. 2. 2020, pp. 429–450. URL:

https : / / proceedings . mlsys . org / paper / 2020 / file /

38af86134b65d0f10fe33d30dd76442e-Paper.pdf.

[62] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris S. Papailiopoulos,

and Yasaman Khazaeni. “Federated Learning with Matched Averaging”. In:

CoRR abs/2002.06440 (2020). arXiv: 2002.06440. URL: https://arxiv.

org/abs/2002.06440.

[63] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor.

“Tackling the Objective Inconsistency Problem in Heterogeneous Federated

Optimization”. In: CoRR abs/2007.07481 (2020). arXiv: 2007.07481. URL:

https://arxiv.org/abs/2007.07481.

[64] Xiaoxiao Li, Meirui JIANG, Xiaofei Zhang, Michael Kamp, and Qi Dou.

“Fed{BN}: Federated Learning on Non-{IID} Features via Local Batch Nor-

malization”. In: International Conference on Learning Representations. 2021. URL:

https://openreview.net/forum?id=6YEQUn0QICG.

120

Bibliography

[65] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J. Dally. “Deep Gra-

dient Compression: Reducing the Communication Bandwidth for Distributed

Training”. In: CoRR abs/1712.01887 (2017). arXiv: 1712.01887. URL: http:

//arxiv.org/abs/1712.01887.

[66] Jakub Konecný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda

Theertha Suresh, and Dave Bacon. “Federated Learning: Strategies for Im-

proving Communication Efficiency”. In: CoRR abs/1610.05492 (2016). arXiv:

1610.05492. URL: http://arxiv.org/abs/1610.05492.

[67] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-

dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth.

“Practical Secure Aggregation for Privacy-Preserving Machine Learning”. In:

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-

tions Security. CCS ’17. Dallas, Texas, USA: Association for Computing Ma-

chinery, 2017, pp. 1175–1191. ISBN: 9781450349468. DOI: 10.1145/3133956.

3133982. URL: https://doi.org/10.1145/3133956.3133982.

[68] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex

Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konecný, Stefano Mazzoc-

chi, H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ra-

mage, and Jason Roselander. “Towards Federated Learning at Scale: System

Design”. In: CoRR abs/1902.01046 (2019). arXiv: 1902.01046. URL: http:

//arxiv.org/abs/1902.01046.

[69] Jeffrey Li, Mikhail Khodak, Sebastian Caldas, and Ameet Talwalkar. “Differen-

tially Private Meta-Learning”. In: CoRR abs/1909.05830 (2019). arXiv: 1909.

05830. URL: http://arxiv.org/abs/1909.05830.

[70] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. “Fed-

erated Multi-Task Learning”. In: CoRR abs/1705.10467 (2017). arXiv: 1705.

10467. URL: http://arxiv.org/abs/1705.10467.

[71] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi

Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cor-

mode, Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El

Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih

Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie

He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi,

Gauri Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Fari-

121

Bibliography

naz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal,

Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel

Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song, Se-

bastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Pra-

neeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu,

Han Yu, and Sen Zhao. “Advances and Open Problems in Federated Learn-

ing”. In: Foundations and Trends® in Machine Learning 14.1–2 (2021), pp. 1–210.

ISSN: 1935-8237. DOI: 10.1561/2200000083. URL: http://dx.doi.org/

10.1561/2200000083.

[72] H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y

Arcas. “Federated Learning of Deep Networks using Model Averaging”. In:

CoRR abs/1602.05629 (2016). arXiv: 1602.05629. URL: http://arxiv.

org/abs/1602.05629.

[73] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas

Chandra. “Federated Learning with Non-IID Data”. In: CoRR abs/1806.00582

(2018). arXiv: 1806.00582. URL: http://arxiv.org/abs/1806.00582.

[74] Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis,

and Seong-Lyun Kim. “Communication-Efficient On-Device Machine Learn-

ing: Federated Distillation and Augmentation under Non-IID Private Data”.

In: CoRR abs/1811.11479 (2018). arXiv: 1811.11479. URL: http://arxiv.

org/abs/1811.11479.

[75] Yae Jee Cho, Jianyu Wang, and Gauri Joshi. “Client Selection in Federated

Learning: Convergence Analysis and Power-of-Choice Selection Strategies”.

In: CoRR abs/2010.01243 (2020). arXiv: 2010.01243. URL: https://arxiv.

org/abs/2010.01243.

[76] Yae Jee Cho, Samarth Gupta, Gauri Joshi, and Osman Yagan. “Bandit-based

Communication-Efficient Client Selection Strategies for Federated Learning”.

In: CoRR abs/2012.08009 (2020). arXiv: 2012.08009. URL: https://arxiv.

org/abs/2012.08009.

[77] Wenlin Chen, Samuel Horvath, and Peter Richtárik. “Optimal Client Sam-

pling for Federated Learning”. In: CoRR abs/2010.13723 (2020). arXiv: 2010.

13723. URL: https://arxiv.org/abs/2010.13723.

122

Bibliography

[78] Mónica Ribero and Haris Vikalo. “Communication-Efficient Federated Learn-

ing via Optimal Client Sampling”. In: CoRR abs/2007.15197 (2020). arXiv:

2007.15197. URL: https://arxiv.org/abs/2007.15197.

[79] Arwa Aldweesh, Abdelouahid Derhab, and Ahmed Z. Emam. “Deep learning

approaches for anomaly-based intrusion detection systems: A survey, taxon-

omy, and open issues”. In: Knowledge-Based Systems 189 (2020), p. 105124. ISSN:

0950-7051. DOI: https://doi.org/10.1016/j.knosys.2019.105124.

URL: https://www.sciencedirect.com/science/article/pii/

S0950705119304897.

[80] Shuhana Azmin and A. B. M Alim Al Islam. “Network Intrusion Detection

System Based on Conditional Variational Laplace AutoEncoder”. In: Proceed-

ings of the 7th International Conference on Networking, Systems and Security.

NSysS ’20. Dhaka, Bangladesh: Association for Computing Machinery, 2020,

pp. 82–88. ISBN: 9781450389051. DOI: 10.1145/3428363.3428371. URL:

https://doi.org/10.1145/3428363.3428371.

[81] Dongyang Li, Daisuke Kotani, and Yasuo Okabe. “Improving Attack Detec-

tion Performance in NIDS Using GAN”. In: 2020 IEEE 44th Annual Comput-

ers, Software, and Applications Conference (COMPSAC). 2020, pp. 817–825. DOI:

10.1109/COMPSAC48688.2020.0-162.

[82] Dashun Liao, Sunpei Huang, Yuyu Tan, and Guoqing Bai. “Network Intrusion

Detection Method Based on GAN Model”. In: 2020 International Conference on

Computer Communication and Network Security (CCNS). 2020, pp. 153–156. DOI:

10.1109/CCNS50731.2020.00041.

[83] Zilong Lin, Yong Shi, and Zhi Xue. “Idsgan: Generative adversarial networks

for attack generation against intrusion detection”. In: Pacific-asia conference on

knowledge discovery and data mining. Springer. 2022, pp. 79–91.

[84] Giuseppina Andresini, Annalisa Appice, Luca De Rose, and Donato Malerba.

“GAN augmentation to deal with imbalance in imaging-based intrusion de-

tection”. In: Future Generation Computer Systems 123 (2021), pp. 108–127. ISSN:

0167-739X. DOI: https://doi.org/10.1016/j.future.2021.04.017.

URL: https://www.sciencedirect.com/science/article/pii/

S0167739X21001382.

123

Bibliography

[85] Meryem Janati Idrissi, Hamza Alami, Abdelkader El Mahdaouy, Abdellah El

Mekki, Soufiane Oualil, Zakaria Yartaoui, and Ismail Berrada. “Fed-ANIDS:

Federated learning for anomaly-based network intrusion detection systems”.

In: Expert Systems with Applications 234 (2023), p. 121000. ISSN: 0957-4174.

DOI: https : / / doi . org / 10 . 1016 / j . eswa . 2023 . 121000. URL:

https : / / www . sciencedirect . com / science / article / pii /

S0957417423015026.

[86] Aliya Tabassum, Aiman Erbad, Wadha Lebda, Amr Mohamed, and Mohsen

Guizani. “FEDGAN-IDS: Privacy-preserving IDS using GAN and Federated

Learning”. In: Computer Communications 192 (2022), pp. 299–310. ISSN: 0140-

3664. DOI: https://doi.org/10.1016/j.comcom.2022.06.015.

URL: https://www.sciencedirect.com/science/article/pii/

S0140366422002171.

[87] Laurent Dinh, David Krueger, and Yoshua Bengio. “Nice: Non-linear inde-

pendent components estimation”. In: arXiv preprint arXiv:1410.8516 (2014).

[88] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation

using Real NVP”. In: CoRR abs/1605.08803 (2016). arXiv: 1605.08803. URL:

http://arxiv.org/abs/1605.08803.

[89] Ev Zisselman and Aviv Tamar. “Deep Residual Flow for Out of Distribution

Detection”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR). June 2020.

[90] Meryem Janati Idrissi, Hamza Alami, Abdelhak Bouayad, and Ismail Berrada.

“NF-NIDS: Normalizing Flows for Network Intrusion Detection Systems”. In:

2023 10th International Conference on Wireless Networks and Mobile Communi-

cations (WINCOM). 2023, pp. 1–7. DOI: 10.1109/WINCOM59760.2023.

10322987.

[91] Chih-Fong Tsai, Yu-Feng Hsu, Chia-Ying Lin, and Wei-Yang Lin. “Intrusion

detection by machine learning: A review”. In: Expert Systems with Applications

36.10 (2009), pp. 11994–12000. ISSN: 0957-4174. DOI: https://doi.org/10.

1016/j.eswa.2009.05.029. URL: https://www.sciencedirect.

com/science/article/pii/S0957417409004801.

[92] Nazli Tekin, Abbas Acar, Ahmet Aris, A. Selcuk Uluagac, and Vehbi Cagri

Gungor. “Energy consumption of on-device machine learning models for IoT

intrusion detection”. In: Internet of Things 21 (2023), p. 100670. ISSN: 2542-

124

Bibliography

6605. DOI: https : / / doi . org / 10 . 1016 / j . iot . 2022 . 100670.

URL: https://www.sciencedirect.com/science/article/pii/

S2542660522001512.

[93] Sawsan Abdul Rahman, Hanine Tout, Chamseddine Talhi, and Azzam

Mourad. “Internet of Things Intrusion Detection: Centralized, On-Device, or

Federated Learning?” In: IEEE Network 34.6 (2020), pp. 310–317. DOI: 10.

1109/MNET.011.2000286.

[94] Thi-Nga Dao and HyungJune Lee. “JointNIDS: Efficient Joint Traffic Manage-

ment for On-Device Network Intrusion Detection”. In: IEEE Transactions on Ve-

hicular Technology 71.12 (2022), pp. 13254–13265. DOI: 10.1109/TVT.2022.

3198266.

[95] Shaashwat Agrawal, Sagnik Sarkar, Ons Aouedi, Gokul Yenduri, Kandaraj

Piamrat, Mamoun Alazab, Sweta Bhattacharya, Praveen Kumar Reddy Mad-

dikunta, and Thippa Reddy Gadekallu. “Federated Learning for intrusion

detection system: Concepts, challenges and future directions”. In: Computer

Communications 195 (2022), pp. 346–361. ISSN: 0140-3664. DOI: https : / /

doi.org/10.1016/j.comcom.2022.09.012. URL: https://www.

sciencedirect.com/science/article/pii/S0140366422003516.

[96] Thien Duc Nguyen, Samuel Marchal, Markus Miettinen, Hossein Fereidooni,

N. Asokan, and Ahmad-Reza Sadeghi. “DIoT: A Federated Self-learning

Anomaly Detection System for IoT”. In: 2019 IEEE 39th International Confer-

ence on Distributed Computing Systems (ICDCS). 2019, pp. 756–767. DOI: 10.

1109/ICDCS.2019.00080.

[97] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. “A de-

tailed analysis of the KDD CUP 99 data set”. In: 2009 IEEE Symposium on Com-

putational Intelligence for Security and Defense Applications. 2009, pp. 1–6. DOI:

10.1109/CISDA.2009.5356528.

[98] Pu Tian, Zheyi Chen, Wei Yu, and Weixian Liao. “Towards asynchronous fed-

erated learning based threat detection: A DC-Adam approach”. In: Computers

& Security 108 (2021), p. 102344. ISSN: 0167-4048. DOI: https://doi.org/

10.1016/j.cose.2021.102344. URL: https://www.sciencedirect.

com/science/article/pii/S0167404821001681.

[99] Yann LeCun, Corinna Cortes, and Chris Burges. MNIST handwritten digit

database. 2010. http://yann.lecun.com/exdb/mnist.

125

Bibliography

[100] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. “Toward gen-

erating a new intrusion detection dataset and intrusion traffic characteriza-

tion.” In: ICISSp 1 (2018), pp. 108–116.

[101] S Garcia, A Parmisano, and MJ Erquiaga. IoT-23: A Labeled Dataset with Ma-

licious and Benign IoT Network Traffic. 2020. http://doi.org/10.5281/

zenodo.4743746.

[102] Valerian Rey, Pedro Miguel Sánchez Sánchez, Alberto Huertas Celdrán, and

Gérôme Bovet. “Federated learning for malware detection in IoT devices”.

In: Computer Networks 204 (2022), p. 108693. ISSN: 1389-1286. DOI: https:

//doi.org/10.1016/j.comnet.2021.108693. URL: https://www.

sciencedirect.com/science/article/pii/S1389128621005582.

[103] Yair Meidan, Michael Bohadana, Yael Mathov, Yisroel Mirsky, Asaf Shabtai,

Dominik Breitenbacher, and Yuval Elovici. “N-BaIoT—Network-Based Detec-

tion of IoT Botnet Attacks Using Deep Autoencoders”. In: IEEE Pervasive Com-

puting 17.3 (2018), pp. 12–22. DOI: 10.1109/MPRV.2018.03367731.

[104] Ying Zhao, Junjun Chen, Di Wu, Jian Teng, and Shui Yu. “Multi-Task Network

Anomaly Detection Using Federated Learning”. In: Proceedings of the Tenth

International Symposium on Information and Communication Technology. SoICT

2019. Hanoi, Ha Long Bay, Viet Nam: Association for Computing Machinery,

2019, pp. 273–279. ISBN: 9781450372459. DOI: 10.1145/3368926.3369705.

URL: https://doi.org/10.1145/3368926.3369705.

[105] Arash Habibi Lashkari, Gerard Draper Gil, Mohammad Mamun, and Ali

Ghorbani. “Characterization of Encrypted and VPN Traffic Using Time-

Related Features”. In: Feb. 2016. DOI: 10.5220/0005740704070414.

[106] Arash Habibi Lashkari, Gerard Draper Gil, Mohammad Mamun, and Ali

Ghorbani. “Characterization of Tor Traffic using Time based Features”. In: Jan.

2017, pp. 253–262. DOI: 10.5220/0006105602530262.

[107] Mohamed Ali Ayed and Chamseddine Talhi. “Federated Learning for

Anomaly-Based Intrusion Detection”. In: 2021 International Symposium on Net-

works, Computers and Communications (ISNCC). 2021, pp. 1–8. DOI: 10.1109/

ISNCC52172.2021.9615816.

[108] Yang Qin and Masaaki Kondo. “Federated Learning-Based Network Intrusion

Detection with a Feature Selection Approach”. In: 2021 International Conference

126

Bibliography

on Electrical, Communication, and Computer Engineering (ICECCE). 2021, pp. 1–

6. DOI: 10.1109/ICECCE52056.2021.9514222.

[109] Mineto Tsukada, Masaaki Kondo, and Hiroki Matsutani. “A Neural Network-

Based On-Device Learning Anomaly Detector for Edge Devices”. In: IEEE

Transactions on Computers 69.7 (2020), pp. 1027–1044. DOI: 10.1109/TC.

2020.2973631.

[110] KDD Cup 1999 Data. Available online https : / / kdd . ics . uci . edu /

databases/kddcup99/kddcup99.html. Accessed: 2024-04-24.

[111] Nour Moustafa and Jill Slay. “UNSW-NB15: a comprehensive data set for net-

work intrusion detection systems (UNSW-NB15 network data set)”. In: 2015

Military Communications and Information Systems Conference (MilCIS). 2015,

pp. 1–6. DOI: 10.1109/MilCIS.2015.7348942.

[112] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. “Kitsune:

An Ensemble of Autoencoders for Online Network Intrusion Detection”. In:

CoRR abs/1802.09089 (2018). arXiv: 1802.09089. URL: http://arxiv.

org/abs/1802.09089.

[113] Majjed Al-Qatf, Yu Lasheng, Mohammed Al-Habib, and Kamal Al-Sabahi.

“Deep Learning Approach Combining Sparse Autoencoder With SVM for

Network Intrusion Detection”. In: IEEE Access 6 (2018), pp. 52843–52856. DOI:

10.1109/ACCESS.2018.2869577.

[114] Gints Engelen, Vera Rimmer, and Wouter Joosen. “Troubleshooting an Intru-

sion Detection Dataset: the CICIDS2017 Case Study”. In: 2021 IEEE Security

and Privacy Workshops (SPW). IEEE. 2021, pp. 7–12.

[115] Lisa Liu, Gints Engelen, Timothy Lynar, Daryl Essam, and Wouter Joosen. “Er-

ror Prevalence in NIDS datasets: A Case Study on CIC-IDS-2017 and CSE-CIC-

IDS-2018”. In: 2022 IEEE Conference on Communications and Network Security

(CNS). IEEE. 2022, pp. 254–262.

[116] Yair Meidan, Michael Bohadana, Yael Mathov, Yisroel Mirsky, Asaf Shabtai,

Dominik Breitenbacher, and Yuval Elovici. “N-baiot—network-based detec-

tion of iot botnet attacks using deep autoencoders”. In: IEEE Pervasive Com-

puting 17.3 (2018), pp. 12–22.

[117] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. “Adversarial Feature

Learning”. In: CoRR abs/1605.09782 (2016). arXiv: 1605.09782. URL: http:

//arxiv.org/abs/1605.09782.

127

Bibliography

[118] Federico Di Mattia, Paolo Galeone, Michele De Simoni, and Emanuele Ghelfi.

“A Survey on GANs for Anomaly Detection”. In: CoRR abs/1906.11632 (2019).

arXiv: 1906.11632. URL: http://arxiv.org/abs/1906.11632.

[119] Camila F. T. Pontes, Manuela M. C. de Souza, João J. C. Gondim, Matt Bishop,

and Marcelo Antonio Marotta. “A New Method for Flow-Based Network In-

trusion Detection Using the Inverse Potts Model”. In: IEEE Transactions on Net-

work and Service Management 18.2 (2021), pp. 1125–1136. DOI: 10.1109/TNSM.

2021.3075503.

[120] Loc Gia Nguyen and Kohei Watabe. “Flow-Based Network Intrusion Detec-

tion Based on BERT Masked Language Model”. In: Proceedings of the 3rd In-

ternational CoNEXT Student Workshop. CoNEXT-SW ’22. Rome, Italy: Associa-

tion for Computing Machinery, 2022, pp. 7–8. ISBN: 9781450399371. DOI: 10.

1145/3565477.3569152. URL: https://doi.org/10.1145/3565477.

3569152.

[121] V. Jyothsna, D. Mukesh, and A. N. Sreedhar. “A Flow-Based Network Intru-

sion Detection System for High-Speed Networks Using Meta-heuristic Scale”.

In: Computing and Network Sustainability. Ed. by Sheng-Lung Peng, Nilanjan

Dey, and Mahesh Bundele. Singapore: Springer Singapore, 2019, pp. 337–347.

ISBN: 978-981-13-7150-9.

[122] Ganesh Sadasivan, Nevil Brownlee, Benoit Claise, and Juergen Quittek. Archi-

tecture for IP flow information export. Tech. rep. 2009.

[123] Palo Alto Networks. Accessed: 2023-11-17. 2005.

[124] Fortinet. Accessed: 2023-11-17. 2000.

[125] Adrian Pekar, Alejandra Duque-Torres, Winston Seah, and Mauricio Caicedo.

“Knowledge Discovery: Can It Shed New Light on Threshold Definition for

Heavy-Hitter Detection?” In: Journal of Network and Systems Management 29

(July 2021), p. 30. DOI: 10.1007/s10922-021-09593-w.

[126] Lan Liu, Pengcheng Wang, Jianliang Ruan, and Jun Lin. ConFlow: Contrast Net-

work Flow Improving Class-Imbalanced Learning in Network Intrusion Detection.

Apr. 2022. DOI: 10.21203/rs.3.rs-1572776/v1.

[127] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-

frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Is-

ard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek

128

Bibliography

Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete War-

den, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. “TensorFlow: A System

for Large-Scale Machine Learning”. In: 12th USENIX Symposium on Operating

Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, Novem-

ber 2-4, 2016. Ed. by Kimberly Keeton and Timothy Roscoe. USENIX Associa-

tion, 2016, pp. 265–283. URL: https://www.usenix.org/conference/

osdi16/technical-sessions/presentation/abadi.

[128] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,

Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca

Antiga, Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary De-

Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. “PyTorch: An Imperative Style,

High-Performance Deep Learning Library”. In: Advances in Neural Informa-

tion Processing Systems 32: Annual Conference on Neural Information Process-

ing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada.

Ed. by Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence

d’Alché-Buc, Emily B. Fox, and Roman Garnett. 2019, pp. 8024–8035. URL:

https : / / proceedings . neurips . cc / paper / 2019 / hash /

bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[129] Mohanad Sarhan, Siamak Layeghy, Nour Moustafa, and Marius Portmann.

“Towards a Standard Feature Set of NIDS Datasets”. In: CoRR abs/2101.11315

(2021). arXiv: 2101.11315. URL: https://arxiv.org/abs/2101.11315.

[130] Ofek Bader, Adi Lichy, Amit Dvir, Ran Dubin, and Chen Hajaj. “Open-Source

Framework for Encrypted Internet and Malicious Traffic Classification”. In:

arXiv preprint arXiv:2206.10144 (2022).

[131] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Courna-

peau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. “Scikit-

learn: Machine Learning in Python”. In: J. Mach. Learn. Res. 12 (2011), pp. 2825–

2830. DOI: 10.5555/1953048.2078195. URL: https://dl.acm.org/

doi/10.5555/1953048.2078195.

[132] Muhammad Asad, Ahmed Moustafa, Takayuki Ito, and Muhammad Aslam.

“Evaluating the Communication Efficiency in Federated Learning Algo-

rithms”. In: 2021 IEEE 24th International Conference on Computer Supported

129

Bibliography

Cooperative Work in Design (CSCWD). 2021, pp. 552–557. DOI: 10 . 1109 /

CSCWD49262.2021.9437738.

[133] Thien Duc Nguyen, Phillip Rieger, Markus Miettinen, and Ahmad-Reza

Sadeghi. “Poisoning Attacks on Federated Learning-based IoT Intrusion De-

tection System”. In: 2020. URL: https://api.semanticscholar.org/

CorpusID:216086694.

[134] Angelo Feraudo, Poonam Yadav, Vadim Safronov, Diana Andreea Popescu,

Richard Mortier, Shiqiang Wang, Paolo Bellavista, and Jon Crowcroft.

“CoLearn: Enabling Federated Learning in MUD-Compliant IoT Edge Net-

works”. In: Proceedings of the Third ACM International Workshop on Edge Sys-

tems, Analytics and Networking. EdgeSys ’20. Heraklion, Greece: Association

for Computing Machinery, 2020, pp. 25–30. ISBN: 9781450371322. DOI: 10.

1145/3378679.3394528. URL: https://doi.org/10.1145/3378679.

3394528.

[135] Sawsan Abdulrahman, Hanine Tout, Hakima Ould-Slimane, Azzam Mourad,

Chamseddine Talhi, and Mohsen Guizani. “A Survey on Federated Learning:

The Journey From Centralized to Distributed On-Site Learning and Beyond”.

In: IEEE Internet of Things Journal 8.7 (2021), pp. 5476–5497. DOI: 10.1109/

JIOT.2020.3030072.

[136] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H. Yang, Farhad Farokhi,

Shi Jin, Tony Q. S. Quek, and H. Vincent Poor. “Federated Learning with

Differential Privacy: Algorithms and Performance Analysis”. In: IEEE Trans-

actions on Information Forensics and Security 15 (2020). Cited by: 707; All

Open Access, Bronze Open Access, Green Open Access, pp. 3454–3469. DOI:

10 . 1109 / TIFS . 2020 . 2988575. URL: https : / / www . scopus .

com / inward / record . uri ? eid = 2 - s2 . 0 - 85083775015 &

doi = 10 . 1109 % 2fTIFS . 2020 . 2988575 & partnerID = 40 & md5 =

70e863d48fd39efdbd36959265772c95.

[137] Chuan Zhao, Shengnan Zhao, Minghao Zhao, Zhenxiang Chen, Chong-Zhi

Gao, Hongwei Li, and Yu-an Tan. “Secure Multi-Party Computation: Theory,

practice and applications”. In: Information Sciences 476 (2019), pp. 357–372.

ISSN: 0020-0255. DOI: https://doi.org/10.1016/j.ins.2018.10.

024. URL: https://www.sciencedirect.com/science/article/

pii/S0020025518308338.

130

Bibliography

[138] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang Liu.

“BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo Federated

Learning”. In: 2020 USENIX Annual Technical Conference (USENIX ATC 20).

USENIX Association, July 2020, pp. 493–506. ISBN: 978-1-939133-14-4. URL:

https://www.usenix.org/conference/atc20/presentation/

zhang-chengliang.

[139] Beibei Li, Yuhao Wu, Jiarui Song, Rongxing Lu, Tao Li, and Liang Zhao.

“DeepFed: Federated Deep Learning for Intrusion Detection in Industrial

Cyber–Physical Systems”. In: IEEE Transactions on Industrial Informatics 17.8

(2021), pp. 5615–5624. DOI: 10.1109/TII.2020.3023430.

[140] Ajesh Koyatan Chathoth, Abhyuday Jagannatha, and Stephen Lee. “Feder-

ated Intrusion Detection for IoT with Heterogeneous Cohort Privacy”. In:

CoRR abs/2101.09878 (2021). arXiv: 2101.09878. URL: https://arxiv.

org/abs/2101.09878.

[141] Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. “Federated learning on

non-IID data: A survey”. In: Neurocomputing 465 (2021), pp. 371–390. ISSN:

0925-2312. DOI: https://doi.org/10.1016/j.neucom.2021.07.098.

URL: https://www.sciencedirect.com/science/article/pii/

S0925231221013254.

[142] Xiaodong Ma, Jia Zhu, Zhihao Lin, Shanxuan Chen, and Yangjie Qin. “A

state-of-the-art survey on solving non-IID data in Federated Learning”. In:

Future Generation Computer Systems 135 (2022), pp. 244–258. ISSN: 0167-739X.

DOI: https : / / doi . org / 10 . 1016 / j . future . 2022 . 05 . 003.

URL: https://www.sciencedirect.com/science/article/pii/

S0167739X22001686.

[143] Sergey Ioffe. “Batch Renormalization: Towards Reducing Minibatch Depen-

dence in Batch-Normalized Models”. In: CoRR abs/1702.03275 (2017). arXiv:

1702.03275. URL: http://arxiv.org/abs/1702.03275.

[144] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip B. Gibbons. The

Non-IID Data Quagmire of Decentralized Machine Learning. 2019. arXiv: 1910.

00189 [cs.LG].

[145] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”.

In: University of Toronto (May 2012).

131

Bibliography

[146] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning

applied to document recognition”. In: Proceedings of the IEEE 86.11 (1998),

pp. 2278–2324. DOI: 10.1109/5.726791.

[147] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-MNIST: a Novel

Image Dataset for Benchmarking Machine Learning Algorithms”. In: CoRR

abs/1708.07747 (2017). arXiv: 1708.07747. URL: http://arxiv.org/

abs/1708.07747.

[148] Gozde Karatas, Onder Demir, and Ozgur Koray Sahingoz. “Increasing the

Performance of Machine Learning-Based IDSs on an Imbalanced and Up-to-

Date Dataset”. In: IEEE Access 8 (2020), pp. 32150–32162. DOI: 10.1109/

ACCESS.2020.2973219.

[149] Yanpei Hua. “An Efficient Traffic Classification Scheme Using Embedded Fea-

ture Selection and LightGBM”. In: 2020 Information Communication Technologies

Conference (ICTC). 2020, pp. 125–130. DOI: 10.1109/ICTC49638.2020.

9123302.

132

Appendix

8.3 Features

We provide the set of features presented in both works [129] and [130]. Table 8.1

presents the features selected in the paper [129]. Table 8.2 describes the flow features

we used and presented in [130].

133

8.3. Features

Table 8.1: Set of features proposed in [129].

Feature Description

tcp_flags Cumulative of all flow TCP flags
src2dst_flags Cumulative of all client TCP flags
dst2src_flags Cumulative of all server TCP flags
min_ttl Min flow TTL
max_ttl Max flow TTL
min_ip_pkt_len Len of the smallest flow IP packet observed
max_ip_pkt_len Len of the largest flow IP packet observed
src_to_dst_second_bytes Bytes/sec (src->dst)
dst_to_src_second_bytes Bytes/sec (dst->src)
retransmitted_in_bytes Number of retransmitted TCP flow bytes (src->dst)
retransmitted_in_packets Number of retransmitted TCP flow packets (src->dst)
retransmitted_out_bytes Number of retransmitted TCP flow bytes (dst->src)
retransmitted_out_packets Number of retransmitted TCP flow packets (dst->src)
src_to_dst_avg_throughput Src to dst average that (bps)
dst_to_src_avg_throughput Dst to src average that (bps)
num_pkts_up_to_128_bytes packets whose IP size <= 128
num_pkts_128_to_256_bytes packets whose IP size > 128 and <= 256
num_pkts_256_to_512_bytes packets whose IP size > 256 and < 512
num_pkts_512_to_1024_bytes packets whose IP size > 512 and < 1024
num_pkts_1024_to_1514_bytes packets whose IP size > 1024 and <= 1514
tcp_win_max_in Max TCP Window (src->dst)
tcp_win_max_out Max TCP Window (dst->src)
icmp_type ICMP Type * 256 + ICMP code
icmp_v4_type ICMP Type
dns_query_id DNS query transaction Id
dns_query_type "DNS query type (e.g., 1=A, 2=NS..)"
dns_ttl_answer TTL of the first A record (if any)
ftp_command_ret_code FTP client command return code

134

8.3. Features

Table 8.2: Set of features proposed in [130].

Features Description

src2dst_first_packet_payload_len First packet’s payload length

src2dst direction

dst2src_first_packet_payload_len First packet’s payload length

dst2src direction

src2dst_most_freq_payload_ratio The ratio of number of packets

with most freq payload len for

direction src2dst to the the to-

tal number of packets in direction

src2dst

src2dst_most_freq_payload_len The number of packets with most

freq payload len for direction

src2dst

dst2src_most_freq_payload_ratio The ratio of number of packets

with most freq payload len for

direction dst2src to the the to-

tal number of packets in direction

src2dst

dst2src_most_freq_payload_len The number of packets with most

freq payload len for direction

dst2src

bidirectional_mean_packet_relative_times The average timestamp in mil-

liseconds between first flow bidi-

rectional packet and all other flow

bidirectional packets.

bidirectional_stddev_packet_relative_times The standard deviation times-

tamp in milliseconds between

first flow bidirectional packet and

all other flow bidirectional pack-

ets.

Continued on next page

135

8.3. Features

Table 8.2 – continued from previous page

Features Description

bidirectional_variance_packet_relative_times The variance timestamp in mil-

liseconds between first flow bidi-

rectional packet and all other flow

bidirectional packets.

bidirectional_coeff_of_var_packet_relative_times The coefficient of variance

(std/avg) of the difference be-

tween first flow bidirectional

packet and all other flow bidirec-

tional packets.

bidirectional_skew_from_median_packet_relative_times The skewness from median

(3ˆ(avg-median) / std) of the

difference between first flow

bidirectional packet and all other

flow bidirectional packets.

src2dst_mean_packet_relative_times The average timestamp in mil-

liseconds between first flow bidi-

rectional packet and all other flow

packets with direction src->dst.

src2dst_stddev_packet_relative_times The standard deviation times-

tamp in milliseconds between

first flow bidirectional packet and

all other flow packets with direc-

tion src->dst.

src2dst_variance_packet_relative_times The variance timestamp in mil-

liseconds between first flow bidi-

rectional packet and all other flow

packets with direction src->dst.

src2dst_coeff_of_var_packet_relative_times The coefficient of variance

(std/avg) of the difference be-

tween first flow bidirectional

packet and all other flow packets

with direction src->dst.

Continued on next page

136

8.3. Features

Table 8.2 – continued from previous page

Features Description

src2dst_skew_from_median_packet_relative_times The skewness from median

(3ˆ(avg-median) / std) of the

difference between first flow

bidirectional packet and all

other flow packets with direction

src->dst.

dst2src_mean_packet_relative_times The average timestamp in mil-

liseconds between first flow bidi-

rectional packet and all other flow

packets with direction dst->src.

dst2src_stddev_packet_relative_times The standard deviation times-

tamp in milliseconds between

first flow bidirectional packet and

all other flow packets with direc-

tion dst->src.

dst2src_variance_packet_relative_times The variance timestamp in mil-

liseconds between first flow bidi-

rectional packet and all other flow

packets with direction dst->src.

dst2src_coeff_of_var_packet_relative_times The coefficient of variance

(std/avg) of the difference be-

tween first flow bidirectional

packet and all other flow packets

with direction dst->src.

dst2src_skew_from_median_packet_relative_times The skewness from median

(3ˆ(avg-median) / std) of the

difference between first flow

bidirectional packet and all

other flow packets with direction

dst->src.

Continued on next page

137

8.3. Features

Table 8.2 – continued from previous page

Features Description

min_req_res_time_diff The minimum timestamp differ-

ence between the request and

its response (delta time between

packet from source and the next

packet from dst or vice versa).

max_req_res_time_diff The maximum timestamp differ-

ence between the request and

its response (delta time between

packet from source and the next

packet from dst or vice versa)

mean_req_res_time_diff The mean of all timestamp dif-

ference between the request and

its response (delta time between

packet from source and the next

packet from dst or vice versa)

median_req_res_time_diff The median of all timestamp dif-

ference between the request and

its response (delta time between

packet from source and the next

packet from dst or vice versa)

stddev_req_res_time_diff The standard deviation of all

timestamp difference between

the request and its response

(timestamp between packet from

source and the next packet from

dst or vice versa)

variance_req_res_time_diff The variance of all timestamp dif-

ference between the request and

its response (timestamp between

packet from source and the next

packet from dst or vice versa)

Continued on next page

138

8.3. Features

Table 8.2 – continued from previous page

Features Description

coeff_of_var_req_res_time_diff The coefficient of variance

(std/avg) of all timestamp differ-

ence between the request and its

response (timestamp between

packet from source and the next

packet from dst or vice versa).

skew_from_median_req_res_time_diff The skewness from median

(3ˆ(avg-median) / std) of all

timestamp difference between

the request and its response

(timestamp between packet from

source and the next packet from

dst or vice versa).

src2dst_small_packet_payload_packets The number of src2dst packets

with a small size (< 32 bytes)

src2dst_small_packet_payload_ratio The ratio of small src2dst packets

(<32 bytes) to the number of all

src2dst packets.

dst2src_small_packet_payload_packets The number of dst2src packets

with a small size (< 32 bytes)

dst2src_small_packet_payload_ratio The ratio of small dst2src packets

(<32 bytes) to the number of all

src2dst packets.

sent_recv_packet_ratio The ratio of the number of re-

ceived packets to the number of

sent packets = recv/sent.

bidirectional_ps_first_quartile The first quartile of flow packets

size (link layer packet size).

bidirectional_ps_second_quartile The second quartile of flow pack-

ets size (link layer packet size).

bidirectional_ps_third_quartile The third quartile of flow packets

size (link layer packet size).

Continued on next page

139

8.3. Features

Table 8.2 – continued from previous page

Features Description

bidirectional_ps_median_absoulte_deviation The median of the absolute dif-

ference between packets size

and the median (median ˆ |

packet_size - median |)

bidirectional_ps_skewness The skewness of flow packets

size (link layer packet size).

bidirectional_ps_kurtosis The kurosis of flow packets size

(link layer packet size).

bidirectional_piat_first_quartile The first quartile of flow packets

delta time (Delta time in millisec-

onds with previous flow packet).

bidirectional_piat_second_quartile The second quartile of flow pack-

ets delta time (Delta time in

milliseconds with previous flow

packet).

bidirectional_piat_third_quartile The third quartile of flow packets

delta time (Delta time in millisec-

onds with previous flow packet).

bidirectional_piat_median_absoulte_deviation The median of the absolute dif-

ference between flow packets

delta time and the median (me-

dian ˆ | packet_size - median |

)

bidirectional_piat_skewness The skewness of flow packets

delta time.

bidirectional_piat_kurtosis The kurtosis of flow packets delta

time.

140

,

